File size: 8,350 Bytes
595c258 9887c2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
---
library_name: transformers
tags: []
---
# Multi-images Multi-audio Multi-turn Malaysian TinyLlama
WanDB https://wandb.ai/huseinzol05/vision-tinyllama?workspace=user-huseinzol05
## how-to
```python
from modeling_combine import MM_LLMs, MM_LLMs_Config
from transformers import AutoTokenizer, AutoProcessor
from PIL import Image
import requests
def prepare_dataset(messages, images: List[str] = None, audio: List[str] = None, sr = 16000):
if images is not None:
images = [Image.open(f).convert('RGB') for f in images]
image_output = image_processor(images=images, return_tensors='pt')['pixel_values']
else:
image_output = None
if audio is not None:
audio = [librosa.load(f, sr=sr)[0] for f in audio]
audio_features = audio_processor(audio, sampling_rate=sr, return_tensors='pt',)['input_features']
else:
audio_features = None
prompt = tokenizer.apply_chat_template(messages, tokenize = False)
outputs = tokenizer(
prompt,
return_tensors='pt',
return_overflowing_tokens=False,
return_length=False
)
outputs['images'] = image_output
outputs['audios'] = audio_features
image_token = tokenizer.convert_tokens_to_ids('<image>')
audio_token = tokenizer.convert_tokens_to_ids('<audio>')
if image_output is not None:
len_image = len(image_output)
else:
len_image = 0
if audio_features is not None:
len_audio = len(audio_features)
else:
len_audio = 0
outputs['image_index'] = torch.tensor([0] * len_image)
outputs['image_starts'] = torch.tensor([image_token] * (len_image + 1))
outputs['audio_index'] = torch.tensor([0] * len_audio)
outputs['audio_starts'] = torch.tensor([audio_token] * (len_audio + 1))
where_is = torch.where((outputs['input_ids'] == image_token) | (outputs['input_ids'] == audio_token))
ls = []
for i in range(len(where_is[0])):
b, k = where_is[0][i], where_is[1][i]
l = int(outputs['input_ids'][b, k])
ls.append(l)
ls = torch.tensor(ls)
outputs['where_is_b'] = where_is[0]
outputs['where_is_k'] = where_is[1]
outputs['ls'] = ls
return outputs
model = MM_LLMs.from_pretrained(
'mesolitica/malaysian-tinyllama-1.1b-mmmmodal',
flash_attention = True,
dtype = torch.bfloat16,
torch_dtype = torch.bfloat16
)
_ = model.cuda()
image_processor = AutoProcessor.from_pretrained('google/siglip-base-patch16-384')
audio_processor = AutoProcessor.from_pretrained('mesolitica/malaysian-whisper-small')
tokenizer = AutoTokenizer.from_pretrained('mesolitica/malaysian-tinyllama-1.1b-mmmmodal')
with open('Persian-cat-breed.jpg', 'wb') as fopen:
fopen.write(requests.get('https://cdn.beautifulnara.net/wp-content/uploads/2017/12/10201620/Persian-cat-breed.jpg').content)
with open('nasi-goreng-1-23.jpg', 'wb') as fopen:
fopen.write(requests.get('https://www.jocooks.com/wp-content/uploads/2023/09/nasi-goreng-1-23.jpg').content)
with open('test.mp3', 'wb') as fopen:
fopen.write(requests.get('https://github.com/mesolitica/multimodal-LLM/raw/master/data/test.mp3').content)
messages = [
{'role': 'user', 'content': '<image> </image> ini gambar apa'},
]
outputs = prepare_dataset(messages, images = ['Persian-cat-breed.jpg'])
if outputs['images'] is not None:
outputs['images'] = outputs['images'].type(model.dtype)
if outputs['audios'] is not None:
outputs['audios'] = outputs['audios'].type(model.dtype)
for k in outputs.keys():
if outputs[k] is not None:
outputs[k] = outputs[k].cuda()
with torch.no_grad():
model_inputs = model.prepare_inputs_for_generation(**outputs)
r = model_inputs.pop('input_ids', None)
generate_kwargs = dict(
model_inputs,
max_new_tokens=300,
top_p=0.95,
top_k=50,
temperature=0.1,
do_sample=True,
num_beams=1,
)
r = model.llm.generate(**generate_kwargs)
print(tokenizer.decode(r[0]))
```
```
<s>Imej itu menunjukkan seekor kucing putih yang comel duduk di atas sofa hitam.</s>
```
```python
messages = [
{'role': 'user', 'content': '<image> </image> <image> </image> apa kaitan 2 gambar ni'},
]
outputs = prepare_dataset(messages, images = ['Persian-cat-breed.jpg', 'nasi-goreng-1-23.jpg'])
if outputs['images'] is not None:
outputs['images'] = outputs['images'].type(model.dtype)
if outputs['audios'] is not None:
outputs['audios'] = outputs['audios'].type(model.dtype)
for k in outputs.keys():
if outputs[k] is not None:
outputs[k] = outputs[k].cuda()
with torch.no_grad():
model_inputs = model.prepare_inputs_for_generation(**outputs)
r = model_inputs.pop('input_ids', None)
generate_kwargs = dict(
model_inputs,
max_new_tokens=300,
top_p=0.95,
top_k=50,
temperature=0.1,
do_sample=True,
num_beams=1,
)
r = model.llm.generate(**generate_kwargs)
print(tokenizer.decode(r[0]))
```
```
<s>Tiada hubungan yang jelas antara gambar 1 (anak kucing putih duduk di atas sofa) dan gambar 2 (foto penutup mangkuk mi telur dengan nasi dan cili). Gambar pertama ialah imej haiwan, manakala gambar kedua ialah imej makanan. Mereka tergolong dalam kategori yang berbeza dan tidak mempunyai hubungan antara satu sama lain.</s>
```
```python
messages = [
{'role': 'user', 'content': '<audio> </audio> apa isu audio ni'},
]
outputs = prepare_dataset(messages, audio = [audio])
if outputs['images'] is not None:
outputs['images'] = outputs['images'].type(model.dtype)
if outputs['audios'] is not None:
outputs['audios'] = outputs['audios'].type(model.dtype)
for k in outputs.keys():
if outputs[k] is not None:
outputs[k] = outputs[k].cuda()
with torch.no_grad():
model_inputs = model.prepare_inputs_for_generation(**outputs, inference = True)
r = model_inputs.pop('input_ids', None)
generate_kwargs = dict(
model_inputs,
max_new_tokens=300,
top_p=0.95,
top_k=50,
temperature=0.9,
do_sample=True,
num_beams=1,
)
r = model.llm.generate(**generate_kwargs)
print(tokenizer.decode(r[0]))
```
```
<s>Isu audio ini berkisar tentang persepsi salah faham dan sikap bakhil berkenaan wang dalam konteks menggalakkan penggunaan e-dompet. Penceramah mencadangkan bahawa orang mungkin keberatan untuk menerima wang kerana tidak melihat manfaat atau nilai menggunakan e-dompet, dan kebimbangan tentang tidak dapat mengakses wang itu jika mereka memerlukannya segera. Penceramah juga menyebut isu ekonomi sistem dan kekurangan sistem yang berkesan di Malaysia. Secara keseluruhannya, isu ini menekankan keperluan untuk pemahaman dan kesedaran yang lebih baik tentang faedah menggunakan e-dompet, serta keperluan untuk pembaharuan sistemik untuk memastikan akses yang saksama kepada wang dan sumber lain.</s>
```
```python
messages = [
{'role': 'user', 'content': '<image> </image> <audio> </audio> apa kaitan gambar dan audio ni'},
]
outputs = prepare_dataset(messages, images = [test_image], audio = [audio])
if outputs['images'] is not None:
outputs['images'] = outputs['images'].type(model.dtype)
if outputs['audios'] is not None:
outputs['audios'] = outputs['audios'].type(model.dtype)
for k in outputs.keys():
if outputs[k] is not None:
outputs[k] = outputs[k].cuda()
with torch.no_grad():
model_inputs = model.prepare_inputs_for_generation(**outputs, inference = True)
r = model_inputs.pop('input_ids', None)
generate_kwargs = dict(
model_inputs,
max_new_tokens=300,
top_p=0.95,
top_k=50,
temperature=0.9,
do_sample=True,
num_beams=1,
)
r = model.llm.generate(**generate_kwargs)
print(tokenizer.decode(r[0]))
```
```
<s>Tidak jelas bagaimana gambar dan audio berkaitan antara satu sama lain. Gambar itu menunjukkan bas pelancongan dengan iklan yang menggalakkan orang ramai menggunakan e-dompet mereka, tetapi ia tidak menyatakan tujuan iklan itu. Audio itu membincangkan idea pembaziran dana sebanyak RM5 juta (kira-kira 1.2 juta USD) ke atas sesuatu projek, tetapi ia tidak menyebut secara langsung bas pelancongan atau e-dompet. Ada kemungkinan bahawa kedua-dua gambar dan audio sedang membincangkan topik yang sama, tetapi lebih banyak konteks diperlukan untuk membuat perkaitan yang pasti.</s>
``` |