ppo-LunarLander-v2 / config.json
meryemjabrane's picture
Upload PPO LunarLander-v2 trained agent
1c71d41
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f653fee1090>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f653fee1120>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f653fee11b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f653fee1240>", "_build": "<function ActorCriticPolicy._build at 0x7f653fee12d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f653fee1360>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f653fee13f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f653fee1480>", "_predict": "<function ActorCriticPolicy._predict at 0x7f653fee1510>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f653fee15a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f653fee1630>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f653fee16c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f653fedccc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692914701984380723, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABpBr2uaZi6tixtufusKjWRQqG6qNiIOAAAgD8AAIA/oPU5Pj8x5j5FB9q+Xwi0vhiKjDyFu4u+AAAAAAAAAAC2UoK+zxdEPxwDLL5HDge/8t60vpYtD70AAAAAAAAAAI30Cb6sUTg+Zef9Pg2ol742LP+8qAuEPgAAAAAAAAAAZk5pu1yLR7qYqPW1sXXzsJk1WTk5LiA1AACAPwAAgD9tZ32+qQitPuBV7z7wPt6+nzEKvv5TqT4AAAAAAAAAAM2qBrzeiJg/Ij73vOqSBb/bXh87QFiDPAAAAAAAAAAAWjfEvWNqGj9VRPy9FA3dvgZXtL3Yc9K9AAAAAAAAAACAvpK9H6kVP4+3y7sToOy+uHStvSyBKb0AAAAAAAAAAGbqfLwKzl27krgxvmSmU761p7i5FqinPgAAgD8AAIA/5qjePVwvXrrW4BI39LSIMmfGMzs/lCm2AAAAAAAAgD/Nzds8FFigukKexLbV2xWxC2LNuvBB5DUAAIA/AACAP5oxSDvcVAq83GwePpwPMb4cRYW8uwQqvwAAgD8AAIA/oH4rvj9ZsD+Ywum+fNP+vjz8b75u/ke+AAAAAAAAAABtQ14+o8UmP3KU972ngN6+iTnRPkNiBL4AAAAAAAAAADOLXTxIk5y63oInOUt+FDTqWsa6jmdBuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKcng5zYEqMAWyUTYUCjAF0lEdAlNlGuTzNEHV9lChoBkdAcKcCxeLNwGgHTX8BaAhHQJTail9Brvd1fZQoaAZHQHFKdC/oJRhoB00FAWgIR0CU26ECNjsldX2UKGgGR0ByhxHWjGkvaAdNSQFoCEdAlNveM+/xlXV9lChoBkdAcEcy8BdUsGgHS/FoCEdAlNyvuCwr2HV9lChoBkdAcRgNAC4jKWgHS+9oCEdAlN0GNJe3QXV9lChoBkdAcsjTGHYYi2gHS+toCEdAlN0jDsMRYnV9lChoBkdAYAAw0waisWgHTegDaAhHQJTeMQ6IWP91fZQoaAZHQHCGpWilBQhoB0vgaAhHQJTek2qDK5l1fZQoaAZHQHGwog/1QIloB02YAWgIR0CU30nHvMKUdX2UKGgGR0BJ1bwrlNlAaAdLi2gIR0CU35rTH80ldX2UKGgGR0ByKJEUj9n9aAdNAwFoCEdAlN+jXrdFfHV9lChoBkdAcLjWqtHQQmgHTUkBaAhHQJTgIn8baRJ1fZQoaAZHQHN1riqABktoB00KAWgIR0CU4Efj0cwQdX2UKGgGR0Bxg6TlkpZwaAdNAwFoCEdAlOCE74i5eHV9lChoBkdAcqh/nGKhtmgHTfgBaAhHQJThMp7TlT51fZQoaAZHQHEnQhKUVzpoB0vhaAhHQJThn++/QBx1fZQoaAZHQG3dhUR3/xVoB00UAWgIR0CU4dr5qM3qdX2UKGgGR0BygedWhh6TaAdNSgFoCEdAlOH1QZXMhXV9lChoBkdAczDVLzwtrmgHTZ4BaAhHQJTiqvKU3XJ1fZQoaAZHQG+34D9wWFhoB00fAWgIR0CU5HCcwxnGdX2UKGgGR7/Cwr1/Ue+3aAdLYGgIR0CU5X2rXDm9dX2UKGgGR0Bwl75dnkDIaAdNWAFoCEdAlObukYXO4XV9lChoBkdAcLX7el9Br2gHS/poCEdAlOh8L4N7SnV9lChoBkdAcX9GgzxgA2gHTSwBaAhHQJTpQuanaWZ1fZQoaAZHQHDqVz6rNnpoB00cAWgIR0CU6WdxAB1cdX2UKGgGR0ByzQiFCb+caAdNMAFoCEdAlOqLqD9OynV9lChoBkdAcWk2itaIN2gHS/9oCEdAlOtL5AQg93V9lChoBkdAcPRN7jT8YWgHTdEBaAhHQJTrvdKujh11fZQoaAZHQHNNYTK1XvJoB019AWgIR0CU7FJPIn0DdX2UKGgGR0Bwbko1DSgHaAdNygFoCEdAlO3gLmZE2HV9lChoBkdAbrZoHs1KoWgHTWABaAhHQJTvIoE0SAZ1fZQoaAZHQHJAVGoaUA1oB0vXaAhHQJTvW9TP0I11fZQoaAZHQHJ06yOaOPxoB02GAWgIR0CU8AN4qwyJdX2UKGgGR0By3E91U2k0aAdN9AFoCEdAlPB47ihnJ3V9lChoBkdAckSX7tRekmgHTbABaAhHQJTy+M98qnZ1fZQoaAZHQHJC+5J9RaZoB0v9aAhHQJTzxgtvn8t1fZQoaAZHQG0SO/+KjztoB01fAWgIR0CU8+yxzJZGdX2UKGgGR0Bxty88La24aAdL8GgIR0CU9AXizcASdX2UKGgGR0BunkI3R5TqaAdL9GgIR0CU9BO0b961dX2UKGgGR0BxzQtbs4T9aAdLyWgIR0CU9CetjkMkdX2UKGgGR0BwmVXeWOZLaAdNMQFoCEdAlPSKtcObzHV9lChoBkdAcPKjsD4gzWgHTRYBaAhHQJT2aBXjlxR1fZQoaAZHQHGY5rULDyhoB02jAmgIR0CU+V+x4Y78dX2UKGgGR0BvFsJ4SpR5aAdL52gIR0CU+fvmozeodX2UKGgGR0BzXigdwNsnaAdNWAFoCEdAlPo/3WWhRXV9lChoBkdAc29Frl/6PGgHTR0BaAhHQJT64VLzwtt1fZQoaAZHQHEo/oFFDv5oB01KAWgIR0CU+1TCtRvWdX2UKGgGR0BwWD889wFUaAdL+WgIR0CU/Fskpqh2dX2UKGgGR0Bz3sdT5wfhaAdL22gIR0CU/J+BpYcOdX2UKGgGR0By44Q+UyHmaAdL62gIR0CU/L0uUUwjdX2UKGgGR0BxXdJSR8txaAdNAQFoCEdAlP1vpyIYWXV9lChoBkdAcsdZ3cHnlmgHS8hoCEdAlP2Vh5PdmHV9lChoBkdAcB7FSKm8/WgHTSEBaAhHQJT+cJfICEJ1fZQoaAZHQHGkVAqur6toB039AWgIR0CU/6g2Ifr9dX2UKGgGR0Byn1i4J/oaaAdNWgFoCEdAlP/eymhufnV9lChoBkdAbmecYqG1yGgHTcYBaAhHQJT/4XDWK/F1fZQoaAZHQCM6xC6Ymb9oB0tsaAhHQJT/8lHBk7R1fZQoaAZHQHFXi2c8TzxoB03JAWgIR0CVAIs8PnSwdX2UKGgGR0BwY2V8kUsWaAdNiAFoCEdAlQFAeNkvsnV9lChoBkdAcaRiFTNt7GgHS95oCEdAlQF5AY51eXV9lChoBkdAcYr8scyWRmgHTQoBaAhHQJUDI6GQCCB1fZQoaAZHQHBk1ev6j35oB00xAWgIR0CVA0iUxEfDdX2UKGgGR0BwP8OlO45MaAdNQwFoCEdAlQONLQHAynV9lChoBkdAciE9ZA6dUmgHTSgBaAhHQJUE6qQzUI91fZQoaAZHQHLxcKgIyCZoB00RAWgIR0CVBT6EJ0GNdX2UKGgGR0Byley1NQCTaAdNNgFoCEdAlQWPbsWweXV9lChoBkdAcdtE0SAYpGgHTQwBaAhHQJUGD47A+IN1fZQoaAZHQHI8BdD6WPdoB00qAWgIR0CVBhaWHDaXdX2UKGgGR0BW/Occ2itaaAdLq2gIR0CVBknYg7o0dX2UKGgGR0BxvxUtI066aAdL7mgIR0CVBohNM496dX2UKGgGR0Bv4uMju8braAdL32gIR0CVB3C7sfJWdX2UKGgGR0ByY0fIS13MaAdNDgFoCEdAlQdu7Dl5nnV9lChoBkdAcZ7oNNJvpGgHTQABaAhHQJUHoYEW69V1fZQoaAZHQHItjKxLTQVoB035AWgIR0CVCAp9ZzPsdX2UKGgGR0BBJFefI0ZWaAdLdmgIR0CVCR3Hq/ucdX2UKGgGR0BxLgOnVG1AaAdL0mgIR0CVCTLUkOZtdX2UKGgGR0Bw20Xxe9i+aAdNmQFoCEdAlQsGvB7/oHV9lChoBkdAc2/tCiRGMGgHTTMBaAhHQJULbz4DcM51fZQoaAZHQHM/2oBJZntoB00HAWgIR0CVC/8wHqu9dX2UKGgGR0Bx775O8CgcaAdNBwFoCEdAlQ1MZ5zHTHV9lChoBkdAb+HnK4hEB2gHS9doCEdAlQ1ruc+aB3V9lChoBkdAcjmcc2itaWgHTXcBaAhHQJUNr9JjDsN1fZQoaAZHQHBswdwNsnBoB00KAWgIR0CVDabQC0WudX2UKGgGR0Bx1yad+XqraAdNNgFoCEdAlQ3R/ViF03V9lChoBkdAdETnIhhYvGgHS/ZoCEdAlQ56FRHf/HV9lChoBkdAckUwMH8jzWgHTScBaAhHQJUPqJAMUh51fZQoaAZHQG3UThYNiH9oB0v8aAhHQJUQX3Hq/ud1fZQoaAZHQHDPUVrRBu5oB02qAWgIR0CVEb5DZ13ddX2UKGgGR0BxrKS0Sh8IaAdNRwFoCEdAlRMRQSBbwHV9lChoBkdAbtfxG2Cul2gHTXgBaAhHQJUTLJEH+qB1fZQoaAZHQHDUOJHiFTNoB007AWgIR0CVFONQTEiudX2UKGgGR0BzCbrAxi5NaAdNLgFoCEdAlRTvP5YYBXV9lChoBkdAcZAvxH5JsmgHS/FoCEdAlRTrXHzYmXV9lChoBkdAbn+LXL/0d2gHS+RoCEdAlRUI4Ia99XV9lChoBkdAcNDRU3n6mGgHS+RoCEdAlRXEEcKgI3V9lChoBkdAcddrRjSXt2gHTTgBaAhHQJUVz0PH1e11fZQoaAZHQHOmMg2ZRbdoB00MAWgIR0CVFhCPIXCTdX2UKGgGR0BxyagWac7RaAdNJgJoCEdAlRaxk7Omi3V9lChoBkdAcS5NX5nDi2gHTSsDaAhHQJUXI83dbgV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}