File size: 4,197 Bytes
79f2f62
 
d9efb8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2c6bb0
 
 
 
 
 
 
e0a5eb5
e2c6bb0
2a2e839
 
e0a5eb5
7718e31
8968e16
09d965c
8968e16
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
license: apache-2.0
model-index:
- name: mera-mix-4x7B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 72.95
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 89.17
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.44
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 77.17
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 85.64
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 66.11
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B
      name: Open LLM Leaderboard
---

# Model mera-mix-4x7B

This is a mixture of experts (MoE) model that is half as large (4 experts instead of 8) as the [Mixtral-8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
while been comparable to it across different benchmarks. You can use it as a drop in replacement for your Mixtral-8x7B and get much faster inference. 

mera-mix-4x7B achieves the score of 75.91 on the OpenLLM Eval and compares well with 72.7 by Mixtral-8x7B and 74.46 by Mixtral-8x22B.

You can try the model with the [Mera Mixture Chat](https://huggingface.co/spaces/meraGPT/mera-mixture-chat).

In addition, to the official Open LLM Leaderboard, the results on OpenLLM Eval have been validated by [others as well (76.59)](https://github.com/saucam/model_evals/tree/main?tab=readme-ov-file#model-eval-results).

Our own initial eval is available [here (76.37)](https://gist.github.com/codelion/78f88333230801c9bbaa6fc22078d820). 

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_meraGPT__mera-mix-4x7B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |75.91|
|AI2 Reasoning Challenge (25-Shot)|72.95|
|HellaSwag (10-Shot)              |89.17|
|MMLU (5-Shot)                    |64.44|
|TruthfulQA (0-shot)              |77.17|
|Winogrande (5-shot)              |85.64|
|GSM8k (5-shot)                   |66.11|