--- license: mit language: - la - fr - esp datasets: - CATMuS/medieval tags: - trocr - image-to-text widget: - src: >- https://huggingface.co/medieval-data/trocr-medieval-semitextualis/resolve/main/images/praegothica-1.png example_title: Praegothica 1 - src: >- https://huggingface.co/medieval-data/trocr-medieval-semitextualis/resolve/main/images/praegothica-2.png example_title: Praegothica 2 - src: >- https://huggingface.co/medieval-data/trocr-medieval-semitextualis/resolve/main/images/praegothica-3.png example_title: Praegothica 3 --- ![logo](logo-praegothica.png) # About This is a TrOCR model for medieval Praegothica. The base model was [microsoft/trocr-base-handwritten](https://huggingface.co/microsoft/trocr-base-handwritten). The model was then finetuned to Caroline: [medieval-data/trocr-medieval-latin-caroline](https://huggingface.co/medieval-data/trocr-medieval-latin-caroline). From a saved checkpoint, the model was further finetuned to Praegothica. The dataset used for training was [CATMuS](https://huggingface.co/datasets/CATMuS/medieval). The model has not been formally tested. Preliminary examination indicates that further finetuning is needed. Finetuning was done with finetune.py found in this repository. # Usage ```python from transformers import TrOCRProcessor, VisionEncoderDecoderModel from PIL import Image import requests # load image from the IAM database url = 'https://huggingface.co/medieval-data/trocr-medieval-humanistica/resolve/main/images/semitextualis-1.png' image = Image.open(requests.get(url, stream=True).raw).convert("RGB") processor = TrOCRProcessor.from_pretrained('medieval-data/trocr-medieval-praegothica') model = VisionEncoderDecoderModel.from_pretrained('medieval-data/trocr-medieval-praegothica') pixel_values = processor(images=image, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` # BibTeX entry and citation info ## TrOCR Paper ```tex @misc{li2021trocr, title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models}, author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei}, year={2021}, eprint={2109.10282}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## CATMuS Paper ```tex @unpublished{clerice:hal-04453952, TITLE = {{CATMuS Medieval: A multilingual large-scale cross-century dataset in Latin script for handwritten text recognition and beyond}}, AUTHOR = {Cl{\'e}rice, Thibault and Pinche, Ariane and Vlachou-Efstathiou, Malamatenia and Chagu{\'e}, Alix and Camps, Jean-Baptiste and Gille-Levenson, Matthias and Brisville-Fertin, Olivier and Fischer, Franz and Gervers, Michaels and Boutreux, Agn{\`e}s and Manton, Avery and Gabay, Simon and O'Connor, Patricia and Haverals, Wouter and Kestemont, Mike and Vandyck, Caroline and Kiessling, Benjamin}, URL = {https://inria.hal.science/hal-04453952}, NOTE = {working paper or preprint}, YEAR = {2024}, MONTH = Feb, KEYWORDS = {Historical sources ; medieval manuscripts ; Latin scripts ; benchmarking dataset ; multilingual ; handwritten text recognition}, PDF = {https://inria.hal.science/hal-04453952/file/ICDAR24___CATMUS_Medieval-1.pdf}, HAL_ID = {hal-04453952}, HAL_VERSION = {v1}, } ```