Update README.md
Browse files
README.md
CHANGED
@@ -3,9 +3,19 @@ license: mit
|
|
3 |
base_model: timpal0l/mdeberta-v3-base-squad2
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
6 |
model-index:
|
7 |
- name: mdeberta-base-squad-ft-qa-en-mt-to-uzn
|
8 |
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -17,15 +27,9 @@ This model is a fine-tuned version of [timpal0l/mdeberta-v3-base-squad2](https:/
|
|
17 |
|
18 |
## Model description
|
19 |
|
20 |
-
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
More information needed
|
25 |
-
|
26 |
-
## Training and evaluation data
|
27 |
-
|
28 |
-
More information needed
|
29 |
|
30 |
## Training procedure
|
31 |
|
@@ -41,13 +45,9 @@ The following hyperparameters were used during training:
|
|
41 |
- lr_scheduler_warmup_ratio: 0.2
|
42 |
- num_epochs: 10.0
|
43 |
|
44 |
-
### Training results
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
### Framework versions
|
49 |
|
50 |
- Transformers 4.40.1
|
51 |
- Pytorch 2.0.0+cu118
|
52 |
- Datasets 2.18.0
|
53 |
-
- Tokenizers 0.19.1
|
|
|
3 |
base_model: timpal0l/mdeberta-v3-base-squad2
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
+
- mdberta
|
7 |
model-index:
|
8 |
- name: mdeberta-base-squad-ft-qa-en-mt-to-uzn
|
9 |
results: []
|
10 |
+
datasets:
|
11 |
+
- med-alex/qa_mt_en_to_uzn
|
12 |
+
language:
|
13 |
+
- uz
|
14 |
+
metrics:
|
15 |
+
- exact_match
|
16 |
+
- f1
|
17 |
+
library_name: transformers
|
18 |
+
pipeline_tag: question-answering
|
19 |
---
|
20 |
|
21 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
27 |
|
28 |
## Model description
|
29 |
|
30 |
+
This model is one of many models created within the framework of a project to study the solution of a QA task for low-resource languages using the example of Kazakh and Uzbek.
|
31 |
|
32 |
+
Please see the [description](https://github.com/med-alex/turkic_qa?tab=readme-ov-file#добро-пожаловать-на-студенческий-проект-посвященный-решению-задачи-qa-для-низкоресурсных-языков-на-примере-казахского-и-узбекского-языка) of the project, where there is a description of the solution and the results of the models in order to choose the best model for the Kazakh or Uzbek language.
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
## Training procedure
|
35 |
|
|
|
45 |
- lr_scheduler_warmup_ratio: 0.2
|
46 |
- num_epochs: 10.0
|
47 |
|
|
|
|
|
|
|
|
|
48 |
### Framework versions
|
49 |
|
50 |
- Transformers 4.40.1
|
51 |
- Pytorch 2.0.0+cu118
|
52 |
- Datasets 2.18.0
|
53 |
+
- Tokenizers 0.19.1
|