--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # mchochlov/codebert-base-cd-ft This is a [sentence-transformers](https://www.SBERT.net) model: It maps code to a 768 dimensional dense vector space and is specifically fine tuned towards clone detection using contrastive learning on parts of BigCloneBench code. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer code_fragments = [...] model = SentenceTransformer('mchochlov/codebert-base-cd-ft') embeddings = model.encode(code_fragments) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('mchochlov/codebert-base-cd-ft') model = AutoModel.from_pretrained('mchochlov/codebert-base-cd-ft') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=mchochlov/codebert-base-cd-ft) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors Please cite this paper if using the model. ```latex @inproceedings{chochlov2022using, title={Using a Nearest-Neighbour, BERT-Based Approach for Scalable Clone Detection}, author={Chochlov, Muslim and Ahmed, Gul Aftab and Patten, James Vincent and Lu, Guoxian and Hou, Wei and Gregg, David and Buckley, Jim}, booktitle={2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)}, pages={582--591}, year={2022}, organization={IEEE} } ```