johannhartmann
commited on
Commit
•
616adee
1
Parent(s):
e45b813
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- merge
|
4 |
+
- mergekit
|
5 |
+
- lazymergekit
|
6 |
+
- DiscoResearch/DiscoLM_German_7b_v1
|
7 |
+
- DRXD1000/Phoenix
|
8 |
+
- VAGOsolutions/SauerkrautLM-7b-v1-mistral
|
9 |
+
- malteos/hermeo-7b
|
10 |
+
base_model:
|
11 |
+
- DiscoResearch/DiscoLM_German_7b_v1
|
12 |
+
- DRXD1000/Phoenix
|
13 |
+
- VAGOsolutions/SauerkrautLM-7b-v1-mistral
|
14 |
+
- malteos/hermeo-7b
|
15 |
+
---
|
16 |
+
|
17 |
+
# Wiedervereinigung-7b-dpo-laser-AWQ
|
18 |
+
|
19 |
+
![image/png](https://huggingface.co/mayflowergmbh/Wiedervereinigung-7b/resolve/main/Wiedervereinigung-7b.png)
|
20 |
+
|
21 |
+
Some of the best german models with 7b parameters as lasered dpo-trained dare_ties merge, quantized using awq.
|
22 |
+
|
23 |
+
Since the original models based on mistral - three of them on the brilliant german LeoLM/leo-mistral-hessianai-7b - they are reunited in this merged model.
|
24 |
+
Hence the name, no right wing or nationalistic ideas involved :-). To improve the result quality they are dpo-trained with a german translation of intel-orca-dpo using our german fork of [LLaMA-Factory](https://github.com/mayflower/LLaMA-Factory).
|
25 |
+
After that this model got a [laserRMT](https://github.com/cognitivecomputations/laserRMT) treatment with german datasets.
|
26 |
+
|
27 |
+
Wiedervereinigung-7b itself is a [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing) merge of:
|
28 |
+
* [DiscoResearch/DiscoLM_German_7b_v1](https://huggingface.co/DiscoResearch/DiscoLM_German_7b_v1)
|
29 |
+
* [DRXD1000/Phoenix](https://huggingface.co/DRXD1000/Phoenix)
|
30 |
+
* [VAGOsolutions/SauerkrautLM-7b-v1-mistral](https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-v1-mistral)
|
31 |
+
* [malteos/hermeo-7b](https://huggingface.co/malteos/hermeo-7b)
|
32 |
+
|
33 |
+
All the actual heavylifting has been done by the creators of these models.
|
34 |
+
|
35 |
+
## 🧩 Configuration
|
36 |
+
|
37 |
+
```yaml
|
38 |
+
models:
|
39 |
+
- model: LeoLM/leo-mistral-hessianai-7b
|
40 |
+
# No parameters necessary for base model
|
41 |
+
- model: DiscoResearch/DiscoLM_German_7b_v1
|
42 |
+
parameters:
|
43 |
+
density: 0.6
|
44 |
+
weight: 0.25
|
45 |
+
- model: DRXD1000/Phoenix
|
46 |
+
parameters:
|
47 |
+
density: 0.6
|
48 |
+
weight: 0.25
|
49 |
+
- model: VAGOsolutions/SauerkrautLM-7b-v1-mistral
|
50 |
+
parameters:
|
51 |
+
density: 0.6
|
52 |
+
weight: 0.25
|
53 |
+
- model: malteos/hermeo-7b
|
54 |
+
parameters:
|
55 |
+
density: 0.6
|
56 |
+
weight: 0.25
|
57 |
+
merge_method: dare_ties
|
58 |
+
base_model: LeoLM/leo-mistral-hessianai-7b
|
59 |
+
parameters:
|
60 |
+
int8_mask: true
|
61 |
+
dtype: bfloat16
|
62 |
+
```
|
63 |
+
|
64 |
+
## mt-bench-de
|
65 |
+
|
66 |
+
Using laser and dpo results seems to help.
|
67 |
+
|
68 |
+
```json
|
69 |
+
{
|
70 |
+
"first_turn": 7.3,
|
71 |
+
"second_turn": 6.6,
|
72 |
+
"categories": {
|
73 |
+
"writing": 8.6,
|
74 |
+
"roleplay": 8.1,
|
75 |
+
"reasoning": 5.25,
|
76 |
+
"math": 3.7,
|
77 |
+
"coding": 4.35,
|
78 |
+
"extraction": 8.15,
|
79 |
+
"stem": 8.875,
|
80 |
+
"humanities": 8.875
|
81 |
+
},
|
82 |
+
"average": 6.97
|
83 |
+
}
|
84 |
+
|
85 |
+
```
|
86 |
+
|
87 |
+
## 💻 Usage
|
88 |
+
|
89 |
+
```python
|
90 |
+
!pip install -qU transformers accelerate
|
91 |
+
|
92 |
+
from transformers import AutoTokenizer
|
93 |
+
import transformers
|
94 |
+
import torch
|
95 |
+
|
96 |
+
model = "mayflowergmbh/Wiedervereinigung-7b-dpo-laser"
|
97 |
+
messages = [{"role": "user", "content": "Was ist ein large language model?"}]
|
98 |
+
|
99 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
100 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
101 |
+
pipeline = transformers.pipeline(
|
102 |
+
"text-generation",
|
103 |
+
model=model,
|
104 |
+
torch_dtype=torch.float16,
|
105 |
+
device_map="auto",
|
106 |
+
)
|
107 |
+
|
108 |
+
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
109 |
+
print(outputs[0]["generated_text"])
|
110 |
+
```
|