File size: 9,163 Bytes
5a55332
 
2349d28
 
 
 
 
 
cbf1aa6
 
 
 
 
 
 
 
 
2349d28
 
 
5a55332
 
 
 
 
 
 
2349d28
5a55332
 
 
 
 
 
 
 
 
 
 
 
 
 
2349d28
 
 
 
 
 
5a55332
2349d28
 
 
5a55332
 
 
 
 
 
 
 
 
 
2349d28
5a55332
 
 
 
 
 
 
 
2349d28
 
 
 
 
5a55332
 
 
 
 
 
 
2349d28
 
5a55332
 
 
 
2349d28
5a55332
 
 
2349d28
 
 
 
 
 
 
 
5a55332
2349d28
5a55332
 
 
 
 
2349d28
 
 
5a55332
 
 
2349d28
5a55332
 
 
2349d28
5a55332
2349d28
 
 
5a55332
 
 
17917cf
5a55332
 
 
 
 
 
2349d28
5a55332
 
2349d28
 
 
 
 
 
 
5a55332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2349d28
5a55332
2349d28
 
 
 
 
 
 
 
5a55332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2349d28
 
 
 
5a55332
 
 
 
 
2349d28
5a55332
2349d28
 
5a55332
 
 
 
 
2349d28
 
 
 
 
 
5a55332
 
 
 
 
 
 
2349d28
5a55332
 
 
 
 
 
 
2349d28
 
 
 
 
 
 
 
5a55332
 
 
 
 
2349d28
5a55332
 
2349d28
5a55332
 
 
 
 
 
 
2349d28
 
 
f9b2cd8
2349d28
 
 
 
 
 
5a55332
 
 
 
 
2349d28
 
 
5a55332
 
 
 
 
 
 
 
 
2349d28
5a55332
 
2349d28
 
 
 
5a55332
 
 
 
 
 
 
 
 
 
 
2349d28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a55332
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#!/usr/bin/env python3

"""
Code here was refactored from gist:
https://gist.github.com/maldevide/08829eada04ad9bd78e46c1a3787d42b

CodeLlama example:
https://huggingface.co/collections/mlabonne/codellama-6509bc68c2d4c8fc379ee87f

Hugging Face Fine-Tuning example:
https://colab.research.google.com/drive/1PEQyJO1-f6j0S_XJ8DV50NkpzasXkrzd?usp=sharing

2024-02-07 - unable to get unsloth to install.
If you want to fine-tune, here's an example Unsloth fine tuning guide for:
Alpaca + TinyLlama + RoPE Scaling full example.ipynb
https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing

"""

import os
import transformers
import torch
import logging
from ddare.merge import merge_tensors
from ddare.tensor import (
    dare_ties_sparsification,
    relative_norm,
    divide_tensor_into_sets,
)
from ddare.util import get_device
import re
from typing import Dict, Tuple, List


logging.basicConfig(level=logging.INFO)
log = logging.getLogger(__name__)


def get_models(
    models: List[str],
    trust_remote_code: bool,
):
    """
    get the models

    :param models: model names to download
    :param trust_remote_code: are you sure??? True/False
    """
    config = {
        "torch_dtype": torch.float16,
        "low_cpu_mem_usage": False,
        "trust_remote_code": trust_remote_code,
    }
    loaded_models = []
    num_models = len(models)
    for midx, model_path in enumerate(models):
        log.info(
            f"loading model={midx + 1}/{num_models} "
            f"model={model_path} "
        )
        loaded_models.append(
            transformers.AutoModelForCausalLM.from_pretrained(
                model_path, **config
            )
        )
    return loaded_models


def pm(
    model,
):
    """
    pretty print model

    :param model: show me the model
    """
    keys = model.state_dict().keys()
    log.info(f"model keys={len(keys)}")
    for i, k in enumerate(keys):
        tensor = model.state_dict()[k]
        log.info(
            f"{i:3d} {k} shape={tensor.shape} "
            f"type={tensor.dtype} dev={tensor.device} "
            f"contig={tensor.is_contiguous()}"
        )


def run_text_test(
    model,
    tokenizer_path: str,
    question: str,
    device: str = "cuda",
):
    """
    run a question on the model and return the answer

    :param model: initialized model
    :param tokenizer_path: tokenizer path/name
    :param question: what are you asking?
    :param device: where do you want to run "cpu"/"gpu"?
    """
    base_model = model.to(device)
    log.info(f"loading tokenizer={tokenizer_path}")
    tokenizer = transformers.AutoTokenizer.from_pretrained(
        tokenizer_path,
        torch_dtype=torch.float16,
    )

    inputs = tokenizer(question, return_tensors="pt").to(
        device
    )
    with torch.backends.cuda.sdp_kernel(
        enable_flash=True,
        enable_math=False,
        enable_mem_efficient=True,
    ):
        outputs = base_model.generate(
            **inputs,
            max_new_tokens=256,
        )
    answer = tokenizer.decode(
        outputs[0], skip_special_tokens=True
    )
    log.info(
        "\n"
        "----------"
        "\n"
        f"tokenizer={tokenizer}\n "
        f"question:\n{question}\n"
        f"answer:\n{answer}\n"
        "----------"
    )
    base_model = base_model.to(device)
    return tokenizer


def get_layer_type(key: str) -> Tuple[int, str]:
    """
    get the layer type

    :param key: name of the layer
    :return: layer id and name
    """
    matcher = re.compile(r"model.layers.(\d+).(.+)")
    m = matcher.match(key)
    if m is None:
        if "model.norm.weight" == key:
            return -1, "norm"
        if "model.embed_tokens.weight" == key:
            return -1, "embed"
        if "lm_head.weight" == key:
            return -1, "head"
        log.info(f"Unknown key {key}")
        return -1, "unknown"
    return int(m.group(1)), m.group(2)


def merge_model_with_ties(
    models: List[str],
    model_dst: str,
    trust_remote_code: bool = True,
):
    """
    merge the list of models into one model
    called model_dst

    :param models: list of models to merge
    :param model_dst: name of the new model
    :param trust_remote_code: are you sure? True/False
    """
    models = get_models(
        models=models,
        trust_remote_code=trust_remote_code,
    )
    config = {}
    result_dict: Dict[str, torch.Tensor] = {}
    device = get_device()
    keys = models[0].state_dict().keys()
    num_keys = len(keys)
    for k in keys:
        block, layer_type = get_layer_type(k)
        m0: torch.Tensor = models[0].state_dict()[k]
        result = m0.clone()
        sets = divide_tensor_into_sets(tensor=m0, n_sets=4)

        # get the src layers to merge
        m = [
            models[1].state_dict()[k],
            models[2].state_dict()[k],
            models[3].state_dict()[k],
            models[4].state_dict()[k],
        ]

        # build a ratio
        ratio = {
            "to_q": 0.0,
            "to_k": 0.0,
            "to_v": 0.0,
        }.get(layer_type, 0.5)

        norm_ratio = 0.68
        log.info(
            f"model={k} {num_keys} shape={m0.shape} "
            f"dtype={m0.dtype} {m0.device} "
            f"ratio={ratio} "
            f"contig={m0.is_contiguous()} "
            f"norm={norm_ratio}"
        )

        # for all tensors
        for i, tensor in enumerate(m):
            if layer_type == "to_k":
                # Get to_q key
                q_base = models[0].state_dict()[
                    k.replace("to_k", "to_q")
                ]
                q_merge = models[i].state_dict()[
                    k.replace("to_k", "to_q")
                ]
                scale = relative_norm(q_merge, q_base)
                tensor = tensor.to(device) / scale
                del scale
            elif layer_type == "to_q":
                scale = relative_norm(tensor, m0)
                tensor = tensor.to(device) * scale
                del scale
            slice_mask = (sets == i).bool()
            new_tensor = dare_ties_sparsification(
                model_a_param=m0,
                model_b_param=tensor,
                drop_rate=norm_ratio,
                ties="sum",
                rescale="off",
                device=device,
                **config,
            )
            new_tensor = merge_tensors(
                "slerp", m0, tensor, ratio
            )
            result = torch.where(
                slice_mask, new_tensor, result
            )
            del new_tensor, slice_mask

        result_dict[k] = result
    # end of merge

    log.info(f"done merge saving to file: {model_dst}")
    out_model = (
        transformers.AutoModelForCausalLM.from_pretrained(
            model_dst, **config
        )
    )
    out_model.state_dict = lambda: result_dict
    out_model.save_pretrained(model_dst)


def run():
    """
    run the merge and upload the model and tokenizer

    This requires having the Hugging Face token
    set before it will work:
    ```huggingface-cli login```
    """
    question = "why is the sky blue?"
    log.info(
        f"merging models and asking the question: {question}"
    )
    model_src = "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T"
    model_dst = "matlok/tinyllama-cinder-openhermes-32k"
    device = "cuda"
    config = {
        "torch_dtype": torch.float16,
        "low_cpu_mem_usage": False,
        "trust_remote_code": True,
    }
    models = [
        model_src,
        "Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct",
        "Doctor-Shotgun/TinyLlama-1.1B-32k",
        "Tensoic/TinyLlama-1.1B-3T-openhermes",
        "Josephgflowers/TinyLlama-3T-Cinder-v1.3",
    ]
    merge_model_with_ties(
        models=models, model_dst=model_dst
    )
    log.info(f"loading newly-created file: {model_dst}")
    model = (
        transformers.AutoModelForCausalLM.from_pretrained(
            model_dst, **config
        )
    )
    log.info(
        f"loaded new model file: {model_dst} "
        f"asking question: {question} "
    )
    run_text_test(
        model=model,
        tokenizer_path=model_src,
        question=question,
        device=device,
    )

    # clean the temp merge dir
    # remove model dir to prevent issues with the tokenizer upload
    model_org = model_dst.split("/")[0]
    if os.path.exists(model_org):
        os.system(f"rm -rf ./{model_org}")

    log.info(f"uploading model: {model_dst}")
    model.push_to_hub(model_dst)

    log.info(f"uploading src tokenizer: {model_src}")
    # reload tokenizer to save it and found on:
    # https://colab.research.google.com/drive/1PEQyJO1-f6j0S_XJ8DV50NkpzasXkrzd?usp=sharing#scrollTo=QQn30cRtAZ-P
    tokenizer = transformers.AutoTokenizer.from_pretrained(
        model_src, trust_remote_code=True
    )
    # https://huggingface.co/docs/transformers/model_sharing#use-the-pushtohub-function
    # tokenizer.push_to_hub("my-awesome-model")
    tokenizer.push_to_hub(model_dst)
    log.info(
        f"done loading new model: {model} "
        f"file: {model_dst}"
    )


if __name__ == "__main__":
    run()