File size: 45,588 Bytes
5a5a8f1
 
 
50228f4
5a55332
50228f4
f48f821
50228f4
 
 
 
 
 
 
6f804a0
 
 
 
 
 
 
 
f48f821
 
 
 
 
 
 
 
50228f4
5a55332
 
50228f4
 
 
 
 
 
 
 
 
5a55332
 
dad14ae
5a55332
 
 
50228f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a55332
50228f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a55332
50228f4
5a55332
50228f4
 
 
5a55332
50228f4
 
5a55332
 
 
50228f4
 
 
 
5a55332
50228f4
 
 
 
 
5a55332
 
 
 
 
 
 
 
 
 
 
 
 
 
50228f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a55332
50228f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a55332
50228f4
 
 
 
 
 
 
 
 
 
 
 
5a55332
 
 
 
50228f4
 
5a55332
50228f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a55332
 
 
 
 
 
 
 
 
 
50228f4
 
 
 
 
 
 
 
 
6520dc9
50228f4
 
 
 
 
 
5a55332
 
 
 
 
 
 
 
50228f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a55332
50228f4
5a55332
 
 
 
17917cf
 
5a55332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50228f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a55332
 
 
50228f4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
---
license: unknown
---

## Merging AI Models like Lego Blocks

This model was merged with the following HuggingFace TinyLlama models using ties:

- TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
- Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct
- Doctor-Shotgun/TinyLlama-1.1B-32k
- Tensoic/TinyLlama-1.1B-3T-openhermes
- Josephgflowers/TinyLlama-3T-Cinder-v1.3

## Why does the Inference API on HuggingFace not work for this merged model?

The included [merge python script](https://huggingface.co/matlok/tinyllama-cinder-openhermes-32k/blob/main/run-tiny-merge.py) does not contain the **LlamaTokenizerFast** tokenizer. This means the HuggingFace Inference API will not work. The tokenizer to use with this model is:

```
TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
```

## How do I fine-tune this model?

Please refer to the Unsloth fine-tuning guide for:

- [Alpaca + TinyLlama + RoPE Scaling full example.ipynb](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing)

## How do I generate my own model merges?

```python3
#!/usr/bin/env python3

import transformers
import torch
import logging
from ddare.merge import merge_tensors
from ddare.tensor import dare_ties_sparsification, relative_norm, divide_tensor_into_sets
from ddare.util import get_device
import re
from typing import Dict, Tuple, List

# If you want to fine-tune, here's an example Unsloth fine tuning guide for:
# Alpaca + TinyLlama + RoPE Scaling full example.ipynb
# https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing

# code here was refactored from gist: https://gist.github.com/maldevide/08829eada04ad9bd78e46c1a3787d42b

logging.basicConfig(level=logging.INFO)
log = logging.getLogger(__name__)


def get_models(
    models: List[str],
    trust_remote_code: bool,
):
    config = {
        'torch_dtype': torch.float16,
        'low_cpu_mem_usage': False,
        'trust_remote_code': trust_remote_code,
    }
    loaded_models = []
    num_models = len(models)
    for midx, model_path in enumerate(models):
        log.info(
            f"loading model={midx + 1}/{num_models} "
            f"model={model_path} "
        )
        loaded_models.append(
            transformers.AutoModelForCausalLM.from_pretrained(
                model_path,
                **config
            )
        )
    return loaded_models


def pm(
    model,
):
    keys = model.state_dict().keys()
    log.info(f"model keys={len(keys)}")
    for i, k in enumerate(keys):
        tensor = model.state_dict()[k]
        log.info(
            f"{i:3d} {k} shape={tensor.shape} "
            f"type={tensor.dtype} dev={tensor.device} "
            f"contig={tensor.is_contiguous()}")


def run_text_test(
    model,
    tokenizer_path,
    question: str,
    device: str = "cuda",
):
    base_model = model.to(device)
    log.info(
        f"loading tokenizer={tokenizer_path}"
    )
    tokenizer = transformers.AutoTokenizer.from_pretrained(
        tokenizer_path,
        torch_dtype=torch.float16,
    )

    inputs = tokenizer(
        question,
        return_tensors="pt"
    ).to(device)
    with torch.backends.cuda.sdp_kernel(
        enable_flash=True,
        enable_math=False,
        enable_mem_efficient=False
    ):
        outputs = base_model.generate(
            **inputs,
            max_new_tokens=1000,
        )
    answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
    log.info(
        "\n"
        "----------"
        f"tokenizer={tokenizer}\n "
        f"question:\n{question}\n"
        f"answer:\n{answer}\n"
        "----------"
    )
    base_model = base_model.to(device)


def get_layer_type(
    key: str
) -> Tuple[int, str]:
    matcher = re.compile(r"model.layers.(\d+).(.+)")
    m = matcher.match(key)
    if m is None:
        if "model.norm.weight" == key:
            return -1, "norm"
        if "model.embed_tokens.weight" == key:
            return -1, "embed"
        if "lm_head.weight" == key:
            return -1, "head"
        log.info(f"Unknown key {key}")
        return -1, "unknown"
    return int(m.group(1)), m.group(2)


def merge_model_with_ties(
    models: List[str],
    model_dst: str,
    trust_remote_code: bool = True
):
    models = get_models(
        models=models,
        trust_remote_code=trust_remote_code,
    )
    config = {}
    result_dict: Dict[str, torch.Tensor] = {}
    device = get_device()
    keys = models[0].state_dict().keys()
    num_keys = len(keys)
    for k in keys:
        block, layer_type = get_layer_type(k)
        m0: torch.Tensor = models[0].state_dict()[k]
        result = m0.clone()
        sets = divide_tensor_into_sets(tensor=m0, n_sets=4)

        # get the src layers to merge
        m = [
            models[1].state_dict()[k],
            models[2].state_dict()[k],
            models[3].state_dict()[k],
            models[4].state_dict()[k],
        ]

        # build a ratio
        ratio = {
            'to_q': 0.0,
            'to_k': 0.0,
            'to_v': 0.0,
        }.get(layer_type, .5)

        norm_ratio = 0.68
        log.info(
            f"model={k} {num_keys} shape={m0.shape} "
            f"dtype={m0.dtype} {m0.device} "
            f"raio={ratio} "
            f"contig={m0.is_contiguous()} "
            f"norm={norm_ratio}")

        # for all tensors
        for i, tensor in enumerate(m):
            if layer_type == "to_k":
                # Get to_q key
                q_base = models[0].state_dict()[k.replace("to_k", "to_q")]
                q_merge = models[i].state_dict()[k.replace("to_k", "to_q")]
                scale = relative_norm(q_merge, q_base)
                tensor = tensor.to(device) / scale
                del scale
            elif layer_type == "to_q":
                scale = relative_norm(tensor, m0)
                tensor = tensor.to(device) * scale
                del scale
            slice_mask = (
                sets == i
            ).bool()
            new_tensor = dare_ties_sparsification(
                model_a_param=m0,
                model_b_param=tensor,
                drop_rate=norm_ratio,
                ties="sum",
                rescale="off",
                device=device,
                **config)
            new_tensor = merge_tensors("slerp", m0, tensor, ratio)
            result = torch.where(slice_mask, new_tensor, result)
            del new_tensor, slice_mask

        result_dict[k] = result
    # end of merge

    log.info(
        f"done merge saving to file: {model_dst}"
    )
    out_model = (
        transformers.AutoModelForCausalLM.from_pretrained(
            model_dst,
            **config
        )
    )
    out_model.state_dict = lambda: result_dict
    out_model.save_pretrained(model_dst)


def run():
    question = (
        "why is the sky blue?"
    )
    log.info(f"merging models and asking the question: {question}")
    model_src = "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T"
    model_dst = "matlok/tinyllama-cinder-openhermes-32k"
    device = "cuda"
    config = {
        'torch_dtype': torch.float16,
        'low_cpu_mem_usage': False,
        'trust_remote_code': True,
    }
    models = [
        model_src,
        "Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct",
        "Doctor-Shotgun/TinyLlama-1.1B-32k",
        "Tensoic/TinyLlama-1.1B-3T-openhermes",
        "Josephgflowers/TinyLlama-3T-Cinder-v1.3",
    ]
    merge_model_with_ties(
        models=models,
        model_dst=model_dst
    )
    log.info(f"loading newly-created file: {model_dst}")
    model = transformers.AutoModelForCausalLM.from_pretrained(
        model_dst,
        **config
    )
    log.info(
        f"loaded new model file: {model_dst} "
        f"asking question: {question} "
    )
    run_text_test(
        model=model,
        tokenizer_path=model_src,
        question=question,
        device=device,
    )
    log.info(f"done loading new model: {model} file: {model_dst}")


if __name__ == "__main__":
    run()
```

### Logs

Here's the logs from the code above:

```
Total VRAM 12282 MB, total RAM 85434 MB
Set vram state to: NORMAL_VRAM
Device: cuda:0 NVIDIA GeForce RTX 4070 Ti : native
VAE dtype: torch.bfloat16
INFO:__main__:merging models and asking the question: why is the sky blue?
INFO:__main__:loading model=1/5 model=TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T 
INFO:__main__:loading model=2/5 model=Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct 
/d/venvs/dev/lib/python3.11/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
  return self.fget.__get__(instance, owner)()
INFO:__main__:loading model=3/5 model=Doctor-Shotgun/TinyLlama-1.1B-32k 
INFO:__main__:loading model=4/5 model=Tensoic/TinyLlama-1.1B-3T-openhermes 
INFO:__main__:loading model=5/5 model=Josephgflowers/TinyLlama-3T-Cinder-v1.3 
INFO:__main__:model=model.embed_tokens.weight 201 shape=torch.Size([32000, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.0.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.0.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.0.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.0.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.0.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.0.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.0.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.0.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.0.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.1.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.1.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.1.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.1.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.1.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.1.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.1.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.1.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.1.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.2.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.2.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.2.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.2.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.2.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.2.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.2.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.2.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.2.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.3.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.3.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.3.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.3.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.3.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.3.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.3.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.3.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.3.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.4.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.4.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.4.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.4.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.4.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.4.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.4.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.4.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.4.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.5.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.5.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.5.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.5.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.5.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.5.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.5.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.5.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.5.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.6.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.6.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.6.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.6.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.6.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.6.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.6.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.6.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.6.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.7.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.7.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.7.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.7.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.7.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.7.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.7.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.7.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.7.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.8.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.8.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.8.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.8.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.8.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.8.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.8.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.8.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.8.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.9.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.9.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.9.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.9.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.9.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.9.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.9.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.9.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.9.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.10.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.10.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.10.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.10.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.10.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.10.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.10.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.10.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.10.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.11.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.11.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.11.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.11.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.11.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.11.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.11.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.11.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.11.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.12.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.12.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.12.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.12.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.12.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.12.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.12.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.12.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.12.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.13.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.13.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.13.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.13.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.13.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.13.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.13.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.13.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.13.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.14.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.14.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.14.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.14.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.14.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.14.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.14.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.14.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.14.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.15.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.15.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.15.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.15.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.15.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.15.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.15.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.15.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.15.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.16.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.16.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.16.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.16.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.16.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.16.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.16.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.16.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.16.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.17.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.17.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.17.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.17.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.17.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.17.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.17.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.17.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.17.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.18.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.18.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.18.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.18.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.18.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.18.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.18.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.18.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.18.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.19.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.19.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.19.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.19.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.19.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.19.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.19.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.19.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.19.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.20.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.20.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.20.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.20.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.20.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.20.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.20.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.20.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.20.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.21.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.21.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.21.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.21.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.21.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.21.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.21.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.21.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.21.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.norm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=lm_head.weight 201 shape=torch.Size([32000, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:done merge saving to file: matlok/tinyllama-cinder-openhermes-32k
INFO:__main__:loading newly-created file: matlok/tinyllama-cinder-openhermes-32k
INFO:__main__:loaded new model file: matlok/tinyllama-cinder-openhermes-32k asking question: why is the sky blue? 
INFO:__main__:loading tokenizer=TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.
INFO:__main__:
----------
tokenizer=LlamaTokenizerFast(name_or_path='TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T', vocab_size=32000, model_max_length=1000000000000000019884624838656, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>'}, clean_up_tokenization_spaces=False),  added_tokens_decoder={
	0: AddedToken("<unk>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
	1: AddedToken("<s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
	2: AddedToken("</s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
}
 question:
why is the sky blue?
answer:
why is the sky blue?
The sky is blue because it is made up of the colors of the visible spectrum. The visible spectrum is a range of colors that can be seen with the naked eye. The colors in the visible spectrum are made up of light waves that are shorter than the wavelengths of the visible light. The shorter wavelengths of light are absorbed more easily by the atmosphere, which is why the sky is blue.
What is the color of the sky?
The color of the sky is blue. This is because the visible spectrum is made up of the colors of the blue and violet parts of the spectrum. The blue part of the spectrum is made up of light waves that are shorter than the wavelengths of the visible light. The violet part of the spectrum is made up of light waves that are longer than the wavelengths of the visible light.
What is the color of the sky in the winter?
The color of the sky in the winter is usually a deep blue. This is because the visible spectrum is made up of the colors of the blue and violet parts of the spectrum. The blue part of the spectrum is made up of light waves that are shorter than the wavelengths of the visible light. The violet part of the spectrum is made up of light waves that are longer than the wavelengths of the visible light.
What is the color of the sky in the summer?
The color of the sky in the summer is usually a bright yellow. This is because the visible spectrum is made up of the colors of the yellow and orange parts of the spectrum. The yellow part of the spectrum is made up of light waves that are shorter than the wavelengths of the visible light. The orange part of the spectrum is made up of light waves that are longer than the wavelengths of the visible light.
What is the color of the sky in the spring?
The color of the sky in the spring is usually a bright green. This is because the visible spectrum is made up of the colors of the green and blue parts of the spectrum. The green part of the spectrum is made up of light waves that are shorter than the wavelengths of the visible light. The blue part of the spectrum is made up of light waves that are longer than the wavelengths of the visible light.
What is the color of the sky in the fall?
The color of the sky in the fall is usually a deep red. This is because the visible spectrum is made up of the colors of the red and orange parts of the spectrum. The red part of the spectrum is made up of light waves that are shorter than the wavelengths of the visible light. The orange part of the spectrum is made up of light waves that are longer than the wavelengths of the visible light.
What is the color of the sky in the winter?
The color of the sky in the winter is usually a deep blue. This is because the visible spectrum is made up of the colors of the blue and violet parts of the spectrum. The blue part of the spectrum is made up of light waves that are shorter than the wavelengths of the visible light. The violet part of the spectrum is made up of light waves that are longer than the wavelengths of the visible light.
What is the color of the sky in the summer?
The color of the sky in the summer is usually a bright yellow. This is because the visible spectrum is made up of the colors of the yellow and orange parts of the spectrum. The yellow part of the spectrum is made up of light waves that are shorter than the wavelengths of the visible light. The orange part of the spectrum is made up of light waves that are longer than the wavelengths of the visible light.
What is the color of the sky in the spring?
The color of the sky in the spring is usually a bright green. This is because the visible spectrum is made up of the colors of the green and blue parts of the spectrum. The green part of the spectrum is made up of light waves that are shorter than the wavelengths of the visible light. The blue part of the spectrum is made up of light waves that are longer than the wavelengths of the visible light.
What is the color of the sky in the fall?
The color of the sky in the fall is usually a deep red. This is because the visible spectrum is made up of the colors of the red and orange parts of the spectrum. The red part of the spectrum is made up of light waves that are shorter than the wavelengths of the visible light. The orange part of the spectrum is made up of light waves that are longer than the wavelengths of the visible light.
What is the color of the
----------
INFO:__main__:done loading new model: LlamaForCausalLM(
  (model): LlamaModel(
    (embed_tokens): Embedding(32000, 2048)
    (layers): ModuleList(
      (0-21): 22 x LlamaDecoderLayer(
        (self_attn): LlamaSdpaAttention(
          (q_proj): Linear(in_features=2048, out_features=2048, bias=False)
          (k_proj): Linear(in_features=2048, out_features=256, bias=False)
          (v_proj): Linear(in_features=2048, out_features=256, bias=False)
          (o_proj): Linear(in_features=2048, out_features=2048, bias=False)
          (rotary_emb): LlamaRotaryEmbedding()
        )
        (mlp): LlamaMLP(
          (gate_proj): Linear(in_features=2048, out_features=5632, bias=False)
          (up_proj): Linear(in_features=2048, out_features=5632, bias=False)
          (down_proj): Linear(in_features=5632, out_features=2048, bias=False)
          (act_fn): SiLU()
        )
        (input_layernorm): LlamaRMSNorm()
        (post_attention_layernorm): LlamaRMSNorm()
      )
    )
    (norm): LlamaRMSNorm()
  )
  (lm_head): Linear(in_features=2048, out_features=32000, bias=False)
) file: matlok/tinyllama-cinder-openhermes-32k

real	0m49.612s
user	3m2.617s
sys	0m14.655s
```

Note: code sample above was modified from [this very helpful GitHub gist](https://gist.github.com/maldevide/08829eada04ad9bd78e46c1a3787d42b)