matheusrdgsf
commited on
Commit
•
e2db78d
1
Parent(s):
e18bb66
update adapter
Browse files- README.md +71 -0
- adapter_config.json +1 -1
README.md
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
---
|
2 |
library_name: peft
|
|
|
3 |
---
|
4 |
## Training procedure
|
5 |
|
@@ -24,5 +25,75 @@ The following `bitsandbytes` quantization config was used during training:
|
|
24 |
- max_input_length: None
|
25 |
### Framework versions
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
- PEFT 0.5.0
|
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
+
pipeline_tag: text-generation
|
4 |
---
|
5 |
## Training procedure
|
6 |
|
|
|
25 |
- max_input_length: None
|
26 |
### Framework versions
|
27 |
|
28 |
+
# Load model
|
29 |
+
```python
|
30 |
+
from transformers import AutoModelForCausalLM, GPTQConfig
|
31 |
+
from peft import PeftModel
|
32 |
+
|
33 |
+
bnb_config = GPTQConfig(
|
34 |
+
bits=8,
|
35 |
+
disable_exllama=True,
|
36 |
+
)
|
37 |
+
|
38 |
+
_model = AutoModelForCausalLM.from_pretrained(
|
39 |
+
'TheBloke/zephyr-7B-beta-GPTQ',
|
40 |
+
quantization_config=bnb_config,
|
41 |
+
device_map='auto',
|
42 |
+
revision='gptq-8bit-32g-actorder_True',
|
43 |
+
)
|
44 |
+
|
45 |
+
model = PeftModel.from_pretrained(_model, 'matheusrdgsf/cesar-ptbr')
|
46 |
+
```
|
47 |
+
|
48 |
+
# Easy inference
|
49 |
+
```python
|
50 |
+
from transformers import GenerationConfig
|
51 |
+
from transformers import AutoTokenizer
|
52 |
+
|
53 |
+
tokenizer_model = AutoTokenizer.from_pretrained('TheBloke/zephyr-7B-beta-GPTQ')
|
54 |
+
tokenizer_template = AutoTokenizer.from_pretrained('HuggingFaceH4/zephyr-7b-alpha')
|
55 |
+
|
56 |
+
generation_config = GenerationConfig(
|
57 |
+
do_sample=True,
|
58 |
+
temperature=0.1,
|
59 |
+
top_p=0.25,
|
60 |
+
top_k=0,
|
61 |
+
max_new_tokens=512,
|
62 |
+
repetition_penalty=1.1,
|
63 |
+
eos_token_id=tokenizer_model.eos_token_id,
|
64 |
+
pad_token_id=tokenizer_model.eos_token_id,
|
65 |
+
)
|
66 |
+
|
67 |
+
|
68 |
+
def get_inference(
|
69 |
+
text,
|
70 |
+
model,
|
71 |
+
tokenizer_model=tokenizer_model,
|
72 |
+
tokenizer_template=tokenizer_template,
|
73 |
+
generation_config=generation_config,
|
74 |
+
):
|
75 |
+
st_time = time.time()
|
76 |
+
inputs = tokenizer_model(
|
77 |
+
tokenizer_template.apply_chat_template(
|
78 |
+
[
|
79 |
+
{
|
80 |
+
"role": "system",
|
81 |
+
"content": "Você é um chatbot para indicação de filmes. Responda de maneira educada sugestões de filmes para os usuários.",
|
82 |
+
},
|
83 |
+
{"role": "user", "content": text},
|
84 |
+
],
|
85 |
+
tokenize=False,
|
86 |
+
),
|
87 |
+
return_tensors="pt",
|
88 |
+
).to("cuda")
|
89 |
+
|
90 |
+
outputs = model.generate(**inputs, generation_config=generation_config)
|
91 |
+
|
92 |
+
print('inference time:', time.time() - st_time)
|
93 |
+
return tokenizer_model.decode(outputs[0], skip_special_tokens=True).split('\n')[-1]
|
94 |
+
|
95 |
+
get_inference('Poderia indicar filmes de ação de até 2 horas?', model)
|
96 |
+
```
|
97 |
+
|
98 |
|
99 |
- PEFT 0.5.0
|
adapter_config.json
CHANGED
@@ -12,7 +12,7 @@
|
|
12 |
"modules_to_save": null,
|
13 |
"peft_type": "LORA",
|
14 |
"r": 16,
|
15 |
-
"revision":
|
16 |
"target_modules": [
|
17 |
"q_proj",
|
18 |
"v_proj"
|
|
|
12 |
"modules_to_save": null,
|
13 |
"peft_type": "LORA",
|
14 |
"r": 16,
|
15 |
+
"revision": "gptq-8bit-32g-actorder_True",
|
16 |
"target_modules": [
|
17 |
"q_proj",
|
18 |
"v_proj"
|