File size: 2,023 Bytes
e7c79d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0888c8
 
e7c79d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0888c8
e7c79d9
 
 
 
 
b0888c8
 
 
 
 
 
 
 
 
 
e7c79d9
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: HooshvareLab/bert-fa-base-uncased-clf-persiannews
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: war_intent_detection_fa
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# war_intent_detection_fa

This model is a fine-tuned version of [HooshvareLab/bert-fa-base-uncased-clf-persiannews](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-clf-persiannews) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1913
- Accuracy: 0.9300

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6751        | 1.0   | 805  | 0.2832          | 0.8974   |
| 0.2366        | 2.0   | 1610 | 0.2369          | 0.9146   |
| 0.2047        | 3.0   | 2415 | 0.1981          | 0.9271   |
| 0.1752        | 4.0   | 3220 | 0.2019          | 0.9287   |
| 0.1565        | 5.0   | 4025 | 0.2046          | 0.9220   |
| 0.1515        | 6.0   | 4830 | 0.2037          | 0.9271   |
| 0.1468        | 7.0   | 5635 | 0.1975          | 0.9282   |
| 0.1341        | 8.0   | 6440 | 0.1982          | 0.9284   |
| 0.1345        | 9.0   | 7245 | 0.1939          | 0.9293   |
| 0.135         | 10.0  | 8050 | 0.1913          | 0.9300   |


### Framework versions

- Transformers 4.43.1
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1