|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import TYPE_CHECKING |
|
|
|
import torch |
|
|
|
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor |
|
from ..utils import requires_backends |
|
from .base import PipelineTool |
|
|
|
|
|
if TYPE_CHECKING: |
|
from PIL import Image |
|
|
|
|
|
class ImageQuestionAnsweringTool(PipelineTool): |
|
default_checkpoint = "dandelin/vilt-b32-finetuned-vqa" |
|
description = ( |
|
"This is a tool that answers a question about an image. It takes an input named `image` which should be the " |
|
"image containing the information, as well as a `question` which should be the question in English. It " |
|
"returns a text that is the answer to the question." |
|
) |
|
name = "image_qa" |
|
pre_processor_class = AutoProcessor |
|
model_class = AutoModelForVisualQuestionAnswering |
|
|
|
inputs = ["image", "text"] |
|
outputs = ["text"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["vision"]) |
|
super().__init__(*args, **kwargs) |
|
|
|
def encode(self, image: "Image", question: str): |
|
return self.pre_processor(image, question, return_tensors="pt") |
|
|
|
def forward(self, inputs): |
|
with torch.no_grad(): |
|
return self.model(**inputs).logits |
|
|
|
def decode(self, outputs): |
|
idx = outputs.argmax(-1).item() |
|
return self.model.config.id2label[idx] |
|
|