|
import enum |
|
import warnings |
|
|
|
from ..tokenization_utils import TruncationStrategy |
|
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging |
|
from .base import PIPELINE_INIT_ARGS, Pipeline |
|
|
|
|
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES |
|
|
|
if is_torch_available(): |
|
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class ReturnType(enum.Enum): |
|
TENSORS = 0 |
|
TEXT = 1 |
|
|
|
|
|
@add_end_docstrings(PIPELINE_INIT_ARGS) |
|
class Text2TextGenerationPipeline(Pipeline): |
|
""" |
|
Pipeline for text to text generation using seq2seq models. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
|
|
>>> generator = pipeline(model="mrm8488/t5-base-finetuned-question-generation-ap") |
|
>>> generator( |
|
... "answer: Manuel context: Manuel has created RuPERTa-base with the support of HF-Transformers and Google" |
|
... ) |
|
[{'generated_text': 'question: Who created the RuPERTa-base?'}] |
|
``` |
|
|
|
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial). You can pass text |
|
generation parameters to this pipeline to control stopping criteria, decoding strategy, and more. Learn more about |
|
text generation parameters in [Text generation strategies](../generation_strategies) and [Text |
|
generation](text_generation). |
|
|
|
This Text2TextGenerationPipeline pipeline can currently be loaded from [`pipeline`] using the following task |
|
identifier: `"text2text-generation"`. |
|
|
|
The models that this pipeline can use are models that have been fine-tuned on a translation task. See the |
|
up-to-date list of available models on |
|
[huggingface.co/models](https://huggingface.co/models?filter=text2text-generation). For a list of available |
|
parameters, see the [following |
|
documentation](https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.generation.GenerationMixin.generate) |
|
|
|
Usage: |
|
|
|
```python |
|
text2text_generator = pipeline("text2text-generation") |
|
text2text_generator("question: What is 42 ? context: 42 is the answer to life, the universe and everything") |
|
```""" |
|
|
|
|
|
return_name = "generated" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
self.check_model_type( |
|
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES |
|
if self.framework == "tf" |
|
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES |
|
) |
|
|
|
def _sanitize_parameters( |
|
self, |
|
return_tensors=None, |
|
return_text=None, |
|
return_type=None, |
|
clean_up_tokenization_spaces=None, |
|
truncation=None, |
|
stop_sequence=None, |
|
**generate_kwargs, |
|
): |
|
preprocess_params = {} |
|
if truncation is not None: |
|
preprocess_params["truncation"] = truncation |
|
|
|
forward_params = generate_kwargs |
|
|
|
postprocess_params = {} |
|
if return_tensors is not None and return_type is None: |
|
return_type = ReturnType.TENSORS if return_tensors else ReturnType.TEXT |
|
if return_type is not None: |
|
postprocess_params["return_type"] = return_type |
|
|
|
if clean_up_tokenization_spaces is not None: |
|
postprocess_params["clean_up_tokenization_spaces"] = clean_up_tokenization_spaces |
|
|
|
if stop_sequence is not None: |
|
stop_sequence_ids = self.tokenizer.encode(stop_sequence, add_special_tokens=False) |
|
if len(stop_sequence_ids) > 1: |
|
warnings.warn( |
|
"Stopping on a multiple token sequence is not yet supported on transformers. The first token of" |
|
" the stop sequence will be used as the stop sequence string in the interim." |
|
) |
|
generate_kwargs["eos_token_id"] = stop_sequence_ids[0] |
|
|
|
return preprocess_params, forward_params, postprocess_params |
|
|
|
def check_inputs(self, input_length: int, min_length: int, max_length: int): |
|
""" |
|
Checks whether there might be something wrong with given input with regard to the model. |
|
""" |
|
return True |
|
|
|
def _parse_and_tokenize(self, *args, truncation): |
|
prefix = self.model.config.prefix if self.model.config.prefix is not None else "" |
|
if isinstance(args[0], list): |
|
if self.tokenizer.pad_token_id is None: |
|
raise ValueError("Please make sure that the tokenizer has a pad_token_id when using a batch input") |
|
args = ([prefix + arg for arg in args[0]],) |
|
padding = True |
|
|
|
elif isinstance(args[0], str): |
|
args = (prefix + args[0],) |
|
padding = False |
|
else: |
|
raise ValueError( |
|
f" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`" |
|
) |
|
inputs = self.tokenizer(*args, padding=padding, truncation=truncation, return_tensors=self.framework) |
|
|
|
if "token_type_ids" in inputs: |
|
del inputs["token_type_ids"] |
|
return inputs |
|
|
|
def __call__(self, *args, **kwargs): |
|
r""" |
|
Generate the output text(s) using text(s) given as inputs. |
|
|
|
Args: |
|
args (`str` or `List[str]`): |
|
Input text for the encoder. |
|
return_tensors (`bool`, *optional*, defaults to `False`): |
|
Whether or not to include the tensors of predictions (as token indices) in the outputs. |
|
return_text (`bool`, *optional*, defaults to `True`): |
|
Whether or not to include the decoded texts in the outputs. |
|
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): |
|
Whether or not to clean up the potential extra spaces in the text output. |
|
truncation (`TruncationStrategy`, *optional*, defaults to `TruncationStrategy.DO_NOT_TRUNCATE`): |
|
The truncation strategy for the tokenization within the pipeline. `TruncationStrategy.DO_NOT_TRUNCATE` |
|
(default) will never truncate, but it is sometimes desirable to truncate the input to fit the model's |
|
max_length instead of throwing an error down the line. |
|
generate_kwargs: |
|
Additional keyword arguments to pass along to the generate method of the model (see the generate method |
|
corresponding to your framework [here](./model#generative-models)). |
|
|
|
Return: |
|
A list or a list of list of `dict`: Each result comes as a dictionary with the following keys: |
|
|
|
- **generated_text** (`str`, present when `return_text=True`) -- The generated text. |
|
- **generated_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token |
|
ids of the generated text. |
|
""" |
|
|
|
result = super().__call__(*args, **kwargs) |
|
if ( |
|
isinstance(args[0], list) |
|
and all(isinstance(el, str) for el in args[0]) |
|
and all(len(res) == 1 for res in result) |
|
): |
|
return [res[0] for res in result] |
|
return result |
|
|
|
def preprocess(self, inputs, truncation=TruncationStrategy.DO_NOT_TRUNCATE, **kwargs): |
|
inputs = self._parse_and_tokenize(inputs, truncation=truncation, **kwargs) |
|
return inputs |
|
|
|
def _forward(self, model_inputs, **generate_kwargs): |
|
if self.framework == "pt": |
|
in_b, input_length = model_inputs["input_ids"].shape |
|
elif self.framework == "tf": |
|
in_b, input_length = tf.shape(model_inputs["input_ids"]).numpy() |
|
|
|
self.check_inputs( |
|
input_length, |
|
generate_kwargs.get("min_length", self.model.config.min_length), |
|
generate_kwargs.get("max_length", self.model.config.max_length), |
|
) |
|
output_ids = self.model.generate(**model_inputs, **generate_kwargs) |
|
out_b = output_ids.shape[0] |
|
if self.framework == "pt": |
|
output_ids = output_ids.reshape(in_b, out_b // in_b, *output_ids.shape[1:]) |
|
elif self.framework == "tf": |
|
output_ids = tf.reshape(output_ids, (in_b, out_b // in_b, *output_ids.shape[1:])) |
|
return {"output_ids": output_ids} |
|
|
|
def postprocess(self, model_outputs, return_type=ReturnType.TEXT, clean_up_tokenization_spaces=False): |
|
records = [] |
|
for output_ids in model_outputs["output_ids"][0]: |
|
if return_type == ReturnType.TENSORS: |
|
record = {f"{self.return_name}_token_ids": output_ids} |
|
elif return_type == ReturnType.TEXT: |
|
record = { |
|
f"{self.return_name}_text": self.tokenizer.decode( |
|
output_ids, |
|
skip_special_tokens=True, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
) |
|
} |
|
records.append(record) |
|
return records |
|
|
|
|
|
@add_end_docstrings(PIPELINE_INIT_ARGS) |
|
class SummarizationPipeline(Text2TextGenerationPipeline): |
|
""" |
|
Summarize news articles and other documents. |
|
|
|
This summarizing pipeline can currently be loaded from [`pipeline`] using the following task identifier: |
|
`"summarization"`. |
|
|
|
The models that this pipeline can use are models that have been fine-tuned on a summarization task, which is |
|
currently, '*bart-large-cnn*', '*t5-small*', '*t5-base*', '*t5-large*', '*t5-3b*', '*t5-11b*'. See the up-to-date |
|
list of available models on [huggingface.co/models](https://huggingface.co/models?filter=summarization). For a list |
|
of available parameters, see the [following |
|
documentation](https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.generation.GenerationMixin.generate) |
|
|
|
Usage: |
|
|
|
```python |
|
# use bart in pytorch |
|
summarizer = pipeline("summarization") |
|
summarizer("An apple a day, keeps the doctor away", min_length=5, max_length=20) |
|
|
|
# use t5 in tf |
|
summarizer = pipeline("summarization", model="t5-base", tokenizer="t5-base", framework="tf") |
|
summarizer("An apple a day, keeps the doctor away", min_length=5, max_length=20) |
|
```""" |
|
|
|
|
|
return_name = "summary" |
|
|
|
def __call__(self, *args, **kwargs): |
|
r""" |
|
Summarize the text(s) given as inputs. |
|
|
|
Args: |
|
documents (*str* or `List[str]`): |
|
One or several articles (or one list of articles) to summarize. |
|
return_text (`bool`, *optional*, defaults to `True`): |
|
Whether or not to include the decoded texts in the outputs |
|
return_tensors (`bool`, *optional*, defaults to `False`): |
|
Whether or not to include the tensors of predictions (as token indices) in the outputs. |
|
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): |
|
Whether or not to clean up the potential extra spaces in the text output. |
|
generate_kwargs: |
|
Additional keyword arguments to pass along to the generate method of the model (see the generate method |
|
corresponding to your framework [here](./model#generative-models)). |
|
|
|
Return: |
|
A list or a list of list of `dict`: Each result comes as a dictionary with the following keys: |
|
|
|
- **summary_text** (`str`, present when `return_text=True`) -- The summary of the corresponding input. |
|
- **summary_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token |
|
ids of the summary. |
|
""" |
|
return super().__call__(*args, **kwargs) |
|
|
|
def check_inputs(self, input_length: int, min_length: int, max_length: int) -> bool: |
|
""" |
|
Checks whether there might be something wrong with given input with regard to the model. |
|
""" |
|
if max_length < min_length: |
|
logger.warning(f"Your min_length={min_length} must be inferior than your max_length={max_length}.") |
|
|
|
if input_length < max_length: |
|
logger.warning( |
|
f"Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is " |
|
"a summarization task, where outputs shorter than the input are typically wanted, you might " |
|
f"consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})" |
|
) |
|
|
|
|
|
@add_end_docstrings(PIPELINE_INIT_ARGS) |
|
class TranslationPipeline(Text2TextGenerationPipeline): |
|
""" |
|
Translates from one language to another. |
|
|
|
This translation pipeline can currently be loaded from [`pipeline`] using the following task identifier: |
|
`"translation_xx_to_yy"`. |
|
|
|
The models that this pipeline can use are models that have been fine-tuned on a translation task. See the |
|
up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=translation). |
|
For a list of available parameters, see the [following |
|
documentation](https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.generation.GenerationMixin.generate) |
|
|
|
Usage: |
|
|
|
```python |
|
en_fr_translator = pipeline("translation_en_to_fr") |
|
en_fr_translator("How old are you?") |
|
```""" |
|
|
|
|
|
return_name = "translation" |
|
|
|
def check_inputs(self, input_length: int, min_length: int, max_length: int): |
|
if input_length > 0.9 * max_length: |
|
logger.warning( |
|
f"Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider " |
|
"increasing your max_length manually, e.g. translator('...', max_length=400)" |
|
) |
|
return True |
|
|
|
def preprocess(self, *args, truncation=TruncationStrategy.DO_NOT_TRUNCATE, src_lang=None, tgt_lang=None): |
|
if getattr(self.tokenizer, "_build_translation_inputs", None): |
|
return self.tokenizer._build_translation_inputs( |
|
*args, return_tensors=self.framework, truncation=truncation, src_lang=src_lang, tgt_lang=tgt_lang |
|
) |
|
else: |
|
return super()._parse_and_tokenize(*args, truncation=truncation) |
|
|
|
def _sanitize_parameters(self, src_lang=None, tgt_lang=None, **kwargs): |
|
preprocess_params, forward_params, postprocess_params = super()._sanitize_parameters(**kwargs) |
|
if src_lang is not None: |
|
preprocess_params["src_lang"] = src_lang |
|
if tgt_lang is not None: |
|
preprocess_params["tgt_lang"] = tgt_lang |
|
if src_lang is None and tgt_lang is None: |
|
|
|
task = kwargs.get("task", self.task) |
|
items = task.split("_") |
|
if task and len(items) == 4: |
|
|
|
preprocess_params["src_lang"] = items[1] |
|
preprocess_params["tgt_lang"] = items[3] |
|
return preprocess_params, forward_params, postprocess_params |
|
|
|
def __call__(self, *args, **kwargs): |
|
r""" |
|
Translate the text(s) given as inputs. |
|
|
|
Args: |
|
args (`str` or `List[str]`): |
|
Texts to be translated. |
|
return_tensors (`bool`, *optional*, defaults to `False`): |
|
Whether or not to include the tensors of predictions (as token indices) in the outputs. |
|
return_text (`bool`, *optional*, defaults to `True`): |
|
Whether or not to include the decoded texts in the outputs. |
|
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): |
|
Whether or not to clean up the potential extra spaces in the text output. |
|
src_lang (`str`, *optional*): |
|
The language of the input. Might be required for multilingual models. Will not have any effect for |
|
single pair translation models |
|
tgt_lang (`str`, *optional*): |
|
The language of the desired output. Might be required for multilingual models. Will not have any effect |
|
for single pair translation models |
|
generate_kwargs: |
|
Additional keyword arguments to pass along to the generate method of the model (see the generate method |
|
corresponding to your framework [here](./model#generative-models)). |
|
|
|
Return: |
|
A list or a list of list of `dict`: Each result comes as a dictionary with the following keys: |
|
|
|
- **translation_text** (`str`, present when `return_text=True`) -- The translation. |
|
- **translation_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The |
|
token ids of the translation. |
|
""" |
|
return super().__call__(*args, **kwargs) |
|
|