|
from typing import Dict |
|
|
|
from .base import GenericTensor, Pipeline |
|
|
|
|
|
|
|
class FeatureExtractionPipeline(Pipeline): |
|
""" |
|
Feature extraction pipeline using no model head. This pipeline extracts the hidden states from the base |
|
transformer, which can be used as features in downstream tasks. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
|
|
>>> extractor = pipeline(model="bert-base-uncased", task="feature-extraction") |
|
>>> result = extractor("This is a simple test.", return_tensors=True) |
|
>>> result.shape # This is a tensor of shape [1, sequence_lenth, hidden_dimension] representing the input string. |
|
torch.Size([1, 8, 768]) |
|
``` |
|
|
|
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) |
|
|
|
This feature extraction pipeline can currently be loaded from [`pipeline`] using the task identifier: |
|
`"feature-extraction"`. |
|
|
|
All models may be used for this pipeline. See a list of all models, including community-contributed models on |
|
[huggingface.co/models](https://huggingface.co/models). |
|
|
|
Arguments: |
|
model ([`PreTrainedModel`] or [`TFPreTrainedModel`]): |
|
The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from |
|
[`PreTrainedModel`] for PyTorch and [`TFPreTrainedModel`] for TensorFlow. |
|
tokenizer ([`PreTrainedTokenizer`]): |
|
The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from |
|
[`PreTrainedTokenizer`]. |
|
modelcard (`str` or [`ModelCard`], *optional*): |
|
Model card attributed to the model for this pipeline. |
|
framework (`str`, *optional*): |
|
The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be |
|
installed. |
|
|
|
If no framework is specified, will default to the one currently installed. If no framework is specified and |
|
both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is |
|
provided. |
|
return_tensors (`bool`, *optional*): |
|
If `True`, returns a tensor according to the specified framework, otherwise returns a list. |
|
task (`str`, defaults to `""`): |
|
A task-identifier for the pipeline. |
|
args_parser ([`~pipelines.ArgumentHandler`], *optional*): |
|
Reference to the object in charge of parsing supplied pipeline parameters. |
|
device (`int`, *optional*, defaults to -1): |
|
Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on |
|
the associated CUDA device id. |
|
tokenize_kwargs (`dict`, *optional*): |
|
Additional dictionary of keyword arguments passed along to the tokenizer. |
|
""" |
|
|
|
def _sanitize_parameters(self, truncation=None, tokenize_kwargs=None, return_tensors=None, **kwargs): |
|
if tokenize_kwargs is None: |
|
tokenize_kwargs = {} |
|
|
|
if truncation is not None: |
|
if "truncation" in tokenize_kwargs: |
|
raise ValueError( |
|
"truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)" |
|
) |
|
tokenize_kwargs["truncation"] = truncation |
|
|
|
preprocess_params = tokenize_kwargs |
|
|
|
postprocess_params = {} |
|
if return_tensors is not None: |
|
postprocess_params["return_tensors"] = return_tensors |
|
|
|
return preprocess_params, {}, postprocess_params |
|
|
|
def preprocess(self, inputs, **tokenize_kwargs) -> Dict[str, GenericTensor]: |
|
return_tensors = self.framework |
|
model_inputs = self.tokenizer(inputs, return_tensors=return_tensors, **tokenize_kwargs) |
|
return model_inputs |
|
|
|
def _forward(self, model_inputs): |
|
model_outputs = self.model(**model_inputs) |
|
return model_outputs |
|
|
|
def postprocess(self, model_outputs, return_tensors=False): |
|
|
|
if return_tensors: |
|
return model_outputs[0] |
|
if self.framework == "pt": |
|
return model_outputs[0].tolist() |
|
elif self.framework == "tf": |
|
return model_outputs[0].numpy().tolist() |
|
|
|
def __call__(self, *args, **kwargs): |
|
""" |
|
Extract the features of the input(s). |
|
|
|
Args: |
|
args (`str` or `List[str]`): One or several texts (or one list of texts) to get the features of. |
|
|
|
Return: |
|
A nested list of `float`: The features computed by the model. |
|
""" |
|
return super().__call__(*args, **kwargs) |
|
|