|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Processor class for Bros. |
|
""" |
|
|
|
from typing import List, Optional, Union |
|
|
|
from ...processing_utils import ProcessorMixin |
|
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy |
|
from ...utils import TensorType |
|
|
|
|
|
class BrosProcessor(ProcessorMixin): |
|
r""" |
|
Constructs a Bros processor which wraps a BERT tokenizer. |
|
|
|
[`BrosProcessor`] offers all the functionalities of [`BertTokenizerFast`]. See the docstring of |
|
[`~BrosProcessor.__call__`] and [`~BrosProcessor.decode`] for more information. |
|
|
|
Args: |
|
tokenizer (`BertTokenizerFast`, *optional*): |
|
An instance of ['BertTokenizerFast`]. The tokenizer is a required input. |
|
""" |
|
attributes = ["tokenizer"] |
|
tokenizer_class = ("BertTokenizer", "BertTokenizerFast") |
|
|
|
def __init__(self, tokenizer=None, **kwargs): |
|
if tokenizer is None: |
|
raise ValueError("You need to specify a `tokenizer`.") |
|
|
|
super().__init__(tokenizer) |
|
|
|
def __call__( |
|
self, |
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, |
|
add_special_tokens: bool = True, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str, TruncationStrategy] = None, |
|
max_length: Optional[int] = None, |
|
stride: int = 0, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_overflowing_tokens: bool = False, |
|
return_special_tokens_mask: bool = False, |
|
return_offsets_mapping: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
""" |
|
This method uses [`BertTokenizerFast.__call__`] to prepare text for the model. |
|
|
|
Please refer to the docstring of the above two methods for more information. |
|
""" |
|
encoding = self.tokenizer( |
|
text=text, |
|
add_special_tokens=add_special_tokens, |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
stride=stride, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_token_type_ids=return_token_type_ids, |
|
return_attention_mask=return_attention_mask, |
|
return_overflowing_tokens=return_overflowing_tokens, |
|
return_special_tokens_mask=return_special_tokens_mask, |
|
return_offsets_mapping=return_offsets_mapping, |
|
return_length=return_length, |
|
verbose=verbose, |
|
return_tensors=return_tensors, |
|
**kwargs, |
|
) |
|
|
|
return encoding |
|
|
|
def batch_decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please |
|
refer to the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
def decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to |
|
the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.decode(*args, **kwargs) |
|
|
|
@property |
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
return list(dict.fromkeys(tokenizer_input_names)) |
|
|