|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Factory function to build auto-model classes.""" |
|
import copy |
|
import importlib |
|
import json |
|
import os |
|
import warnings |
|
from collections import OrderedDict |
|
|
|
from ...configuration_utils import PretrainedConfig |
|
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code |
|
from ...utils import ( |
|
CONFIG_NAME, |
|
cached_file, |
|
copy_func, |
|
extract_commit_hash, |
|
find_adapter_config_file, |
|
is_peft_available, |
|
logging, |
|
requires_backends, |
|
) |
|
from .configuration_auto import AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
CLASS_DOCSTRING = """ |
|
This is a generic model class that will be instantiated as one of the model classes of the library when created |
|
with the [`~BaseAutoModelClass.from_pretrained`] class method or the [`~BaseAutoModelClass.from_config`] class |
|
method. |
|
|
|
This class cannot be instantiated directly using `__init__()` (throws an error). |
|
""" |
|
|
|
FROM_CONFIG_DOCSTRING = """ |
|
Instantiates one of the model classes of the library from a configuration. |
|
|
|
Note: |
|
Loading a model from its configuration file does **not** load the model weights. It only affects the |
|
model's configuration. Use [`~BaseAutoModelClass.from_pretrained`] to load the model weights. |
|
|
|
Args: |
|
config ([`PretrainedConfig`]): |
|
The model class to instantiate is selected based on the configuration class: |
|
|
|
List options |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoConfig, BaseAutoModelClass |
|
|
|
>>> # Download configuration from huggingface.co and cache. |
|
>>> config = AutoConfig.from_pretrained("checkpoint_placeholder") |
|
>>> model = BaseAutoModelClass.from_config(config) |
|
``` |
|
""" |
|
|
|
FROM_PRETRAINED_TORCH_DOCSTRING = """ |
|
Instantiate one of the model classes of the library from a pretrained model. |
|
|
|
The model class to instantiate is selected based on the `model_type` property of the config object (either |
|
passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by |
|
falling back to using pattern matching on `pretrained_model_name_or_path`: |
|
|
|
List options |
|
|
|
The model is set in evaluation mode by default using `model.eval()` (so for instance, dropout modules are |
|
deactivated). To train the model, you should first set it back in training mode with `model.train()` |
|
|
|
Args: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`): |
|
Can be either: |
|
|
|
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. |
|
Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a |
|
user or organization name, like `dbmdz/bert-base-german-cased`. |
|
- A path to a *directory* containing model weights saved using |
|
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. |
|
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In |
|
this case, `from_tf` should be set to `True` and a configuration object should be provided as |
|
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a |
|
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. |
|
model_args (additional positional arguments, *optional*): |
|
Will be passed along to the underlying model `__init__()` method. |
|
config ([`PretrainedConfig`], *optional*): |
|
Configuration for the model to use instead of an automatically loaded configuration. Configuration can |
|
be automatically loaded when: |
|
|
|
- The model is a model provided by the library (loaded with the *model id* string of a pretrained |
|
model). |
|
- The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the |
|
save directory. |
|
- The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a |
|
configuration JSON file named *config.json* is found in the directory. |
|
state_dict (*Dict[str, torch.Tensor]*, *optional*): |
|
A state dictionary to use instead of a state dictionary loaded from saved weights file. |
|
|
|
This option can be used if you want to create a model from a pretrained configuration but load your own |
|
weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and |
|
[`~PreTrainedModel.from_pretrained`] is not a simpler option. |
|
cache_dir (`str` or `os.PathLike`, *optional*): |
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the |
|
standard cache should not be used. |
|
from_tf (`bool`, *optional*, defaults to `False`): |
|
Load the model weights from a TensorFlow checkpoint save file (see docstring of |
|
`pretrained_model_name_or_path` argument). |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received files. Will attempt to resume the download if such a |
|
file exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
output_loading_info(`bool`, *optional*, defaults to `False`): |
|
Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. |
|
local_files_only(`bool`, *optional*, defaults to `False`): |
|
Whether or not to only look at local files (e.g., not try downloading the model). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
trust_remote_code (`bool`, *optional*, defaults to `False`): |
|
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option |
|
should only be set to `True` for repositories you trust and in which you have read the code, as it will |
|
execute code present on the Hub on your local machine. |
|
code_revision (`str`, *optional*, defaults to `"main"`): |
|
The specific revision to use for the code on the Hub, if the code leaves in a different repository than |
|
the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based |
|
system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier |
|
allowed by git. |
|
kwargs (additional keyword arguments, *optional*): |
|
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., |
|
`output_attentions=True`). Behaves differently depending on whether a `config` is provided or |
|
automatically loaded: |
|
|
|
- If a configuration is provided with `config`, `**kwargs` will be directly passed to the |
|
underlying model's `__init__` method (we assume all relevant updates to the configuration have |
|
already been done) |
|
- If a configuration is not provided, `kwargs` will be first passed to the configuration class |
|
initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that |
|
corresponds to a configuration attribute will be used to override said attribute with the |
|
supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute |
|
will be passed to the underlying model's `__init__` function. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoConfig, BaseAutoModelClass |
|
|
|
>>> # Download model and configuration from huggingface.co and cache. |
|
>>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder") |
|
|
|
>>> # Update configuration during loading |
|
>>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder", output_attentions=True) |
|
>>> model.config.output_attentions |
|
True |
|
|
|
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower) |
|
>>> config = AutoConfig.from_pretrained("./tf_model/shortcut_placeholder_tf_model_config.json") |
|
>>> model = BaseAutoModelClass.from_pretrained( |
|
... "./tf_model/shortcut_placeholder_tf_checkpoint.ckpt.index", from_tf=True, config=config |
|
... ) |
|
``` |
|
""" |
|
|
|
FROM_PRETRAINED_TF_DOCSTRING = """ |
|
Instantiate one of the model classes of the library from a pretrained model. |
|
|
|
The model class to instantiate is selected based on the `model_type` property of the config object (either |
|
passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by |
|
falling back to using pattern matching on `pretrained_model_name_or_path`: |
|
|
|
List options |
|
|
|
Args: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`): |
|
Can be either: |
|
|
|
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. |
|
Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a |
|
user or organization name, like `dbmdz/bert-base-german-cased`. |
|
- A path to a *directory* containing model weights saved using |
|
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. |
|
- A path or url to a *PyTorch state_dict save file* (e.g, `./pt_model/pytorch_model.bin`). In this |
|
case, `from_pt` should be set to `True` and a configuration object should be provided as `config` |
|
argument. This loading path is slower than converting the PyTorch model in a TensorFlow model |
|
using the provided conversion scripts and loading the TensorFlow model afterwards. |
|
model_args (additional positional arguments, *optional*): |
|
Will be passed along to the underlying model `__init__()` method. |
|
config ([`PretrainedConfig`], *optional*): |
|
Configuration for the model to use instead of an automatically loaded configuration. Configuration can |
|
be automatically loaded when: |
|
|
|
- The model is a model provided by the library (loaded with the *model id* string of a pretrained |
|
model). |
|
- The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the |
|
save directory. |
|
- The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a |
|
configuration JSON file named *config.json* is found in the directory. |
|
cache_dir (`str` or `os.PathLike`, *optional*): |
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the |
|
standard cache should not be used. |
|
from_pt (`bool`, *optional*, defaults to `False`): |
|
Load the model weights from a PyTorch checkpoint save file (see docstring of |
|
`pretrained_model_name_or_path` argument). |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received files. Will attempt to resume the download if such a |
|
file exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
output_loading_info(`bool`, *optional*, defaults to `False`): |
|
Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. |
|
local_files_only(`bool`, *optional*, defaults to `False`): |
|
Whether or not to only look at local files (e.g., not try downloading the model). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
trust_remote_code (`bool`, *optional*, defaults to `False`): |
|
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option |
|
should only be set to `True` for repositories you trust and in which you have read the code, as it will |
|
execute code present on the Hub on your local machine. |
|
code_revision (`str`, *optional*, defaults to `"main"`): |
|
The specific revision to use for the code on the Hub, if the code leaves in a different repository than |
|
the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based |
|
system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier |
|
allowed by git. |
|
kwargs (additional keyword arguments, *optional*): |
|
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., |
|
`output_attentions=True`). Behaves differently depending on whether a `config` is provided or |
|
automatically loaded: |
|
|
|
- If a configuration is provided with `config`, `**kwargs` will be directly passed to the |
|
underlying model's `__init__` method (we assume all relevant updates to the configuration have |
|
already been done) |
|
- If a configuration is not provided, `kwargs` will be first passed to the configuration class |
|
initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that |
|
corresponds to a configuration attribute will be used to override said attribute with the |
|
supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute |
|
will be passed to the underlying model's `__init__` function. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoConfig, BaseAutoModelClass |
|
|
|
>>> # Download model and configuration from huggingface.co and cache. |
|
>>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder") |
|
|
|
>>> # Update configuration during loading |
|
>>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder", output_attentions=True) |
|
>>> model.config.output_attentions |
|
True |
|
|
|
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower) |
|
>>> config = AutoConfig.from_pretrained("./pt_model/shortcut_placeholder_pt_model_config.json") |
|
>>> model = BaseAutoModelClass.from_pretrained( |
|
... "./pt_model/shortcut_placeholder_pytorch_model.bin", from_pt=True, config=config |
|
... ) |
|
``` |
|
""" |
|
|
|
FROM_PRETRAINED_FLAX_DOCSTRING = """ |
|
Instantiate one of the model classes of the library from a pretrained model. |
|
|
|
The model class to instantiate is selected based on the `model_type` property of the config object (either |
|
passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by |
|
falling back to using pattern matching on `pretrained_model_name_or_path`: |
|
|
|
List options |
|
|
|
Args: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`): |
|
Can be either: |
|
|
|
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. |
|
Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a |
|
user or organization name, like `dbmdz/bert-base-german-cased`. |
|
- A path to a *directory* containing model weights saved using |
|
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. |
|
- A path or url to a *PyTorch state_dict save file* (e.g, `./pt_model/pytorch_model.bin`). In this |
|
case, `from_pt` should be set to `True` and a configuration object should be provided as `config` |
|
argument. This loading path is slower than converting the PyTorch model in a TensorFlow model |
|
using the provided conversion scripts and loading the TensorFlow model afterwards. |
|
model_args (additional positional arguments, *optional*): |
|
Will be passed along to the underlying model `__init__()` method. |
|
config ([`PretrainedConfig`], *optional*): |
|
Configuration for the model to use instead of an automatically loaded configuration. Configuration can |
|
be automatically loaded when: |
|
|
|
- The model is a model provided by the library (loaded with the *model id* string of a pretrained |
|
model). |
|
- The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the |
|
save directory. |
|
- The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a |
|
configuration JSON file named *config.json* is found in the directory. |
|
cache_dir (`str` or `os.PathLike`, *optional*): |
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the |
|
standard cache should not be used. |
|
from_pt (`bool`, *optional*, defaults to `False`): |
|
Load the model weights from a PyTorch checkpoint save file (see docstring of |
|
`pretrained_model_name_or_path` argument). |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received files. Will attempt to resume the download if such a |
|
file exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
output_loading_info(`bool`, *optional*, defaults to `False`): |
|
Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. |
|
local_files_only(`bool`, *optional*, defaults to `False`): |
|
Whether or not to only look at local files (e.g., not try downloading the model). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
trust_remote_code (`bool`, *optional*, defaults to `False`): |
|
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option |
|
should only be set to `True` for repositories you trust and in which you have read the code, as it will |
|
execute code present on the Hub on your local machine. |
|
code_revision (`str`, *optional*, defaults to `"main"`): |
|
The specific revision to use for the code on the Hub, if the code leaves in a different repository than |
|
the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based |
|
system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier |
|
allowed by git. |
|
kwargs (additional keyword arguments, *optional*): |
|
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., |
|
`output_attentions=True`). Behaves differently depending on whether a `config` is provided or |
|
automatically loaded: |
|
|
|
- If a configuration is provided with `config`, `**kwargs` will be directly passed to the |
|
underlying model's `__init__` method (we assume all relevant updates to the configuration have |
|
already been done) |
|
- If a configuration is not provided, `kwargs` will be first passed to the configuration class |
|
initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that |
|
corresponds to a configuration attribute will be used to override said attribute with the |
|
supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute |
|
will be passed to the underlying model's `__init__` function. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoConfig, BaseAutoModelClass |
|
|
|
>>> # Download model and configuration from huggingface.co and cache. |
|
>>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder") |
|
|
|
>>> # Update configuration during loading |
|
>>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder", output_attentions=True) |
|
>>> model.config.output_attentions |
|
True |
|
|
|
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower) |
|
>>> config = AutoConfig.from_pretrained("./pt_model/shortcut_placeholder_pt_model_config.json") |
|
>>> model = BaseAutoModelClass.from_pretrained( |
|
... "./pt_model/shortcut_placeholder_pytorch_model.bin", from_pt=True, config=config |
|
... ) |
|
``` |
|
""" |
|
|
|
|
|
def _get_model_class(config, model_mapping): |
|
supported_models = model_mapping[type(config)] |
|
if not isinstance(supported_models, (list, tuple)): |
|
return supported_models |
|
|
|
name_to_model = {model.__name__: model for model in supported_models} |
|
architectures = getattr(config, "architectures", []) |
|
for arch in architectures: |
|
if arch in name_to_model: |
|
return name_to_model[arch] |
|
elif f"TF{arch}" in name_to_model: |
|
return name_to_model[f"TF{arch}"] |
|
elif f"Flax{arch}" in name_to_model: |
|
return name_to_model[f"Flax{arch}"] |
|
|
|
|
|
|
|
return supported_models[0] |
|
|
|
|
|
class _BaseAutoModelClass: |
|
|
|
_model_mapping = None |
|
|
|
def __init__(self, *args, **kwargs): |
|
raise EnvironmentError( |
|
f"{self.__class__.__name__} is designed to be instantiated " |
|
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or " |
|
f"`{self.__class__.__name__}.from_config(config)` methods." |
|
) |
|
|
|
@classmethod |
|
def from_config(cls, config, **kwargs): |
|
trust_remote_code = kwargs.pop("trust_remote_code", None) |
|
has_remote_code = hasattr(config, "auto_map") and cls.__name__ in config.auto_map |
|
has_local_code = type(config) in cls._model_mapping.keys() |
|
trust_remote_code = resolve_trust_remote_code( |
|
trust_remote_code, config._name_or_path, has_local_code, has_remote_code |
|
) |
|
|
|
if has_remote_code and trust_remote_code: |
|
class_ref = config.auto_map[cls.__name__] |
|
if "--" in class_ref: |
|
repo_id, class_ref = class_ref.split("--") |
|
else: |
|
repo_id = config.name_or_path |
|
model_class = get_class_from_dynamic_module(class_ref, repo_id, **kwargs) |
|
if os.path.isdir(config._name_or_path): |
|
model_class.register_for_auto_class(cls.__name__) |
|
else: |
|
cls.register(config.__class__, model_class, exist_ok=True) |
|
_ = kwargs.pop("code_revision", None) |
|
return model_class._from_config(config, **kwargs) |
|
elif type(config) in cls._model_mapping.keys(): |
|
model_class = _get_model_class(config, cls._model_mapping) |
|
return model_class._from_config(config, **kwargs) |
|
|
|
raise ValueError( |
|
f"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\n" |
|
f"Model type should be one of {', '.join(c.__name__ for c in cls._model_mapping.keys())}." |
|
) |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): |
|
config = kwargs.pop("config", None) |
|
trust_remote_code = kwargs.pop("trust_remote_code", None) |
|
kwargs["_from_auto"] = True |
|
hub_kwargs_names = [ |
|
"cache_dir", |
|
"force_download", |
|
"local_files_only", |
|
"proxies", |
|
"resume_download", |
|
"revision", |
|
"subfolder", |
|
"use_auth_token", |
|
"token", |
|
] |
|
hub_kwargs = {name: kwargs.pop(name) for name in hub_kwargs_names if name in kwargs} |
|
code_revision = kwargs.pop("code_revision", None) |
|
commit_hash = kwargs.pop("_commit_hash", None) |
|
adapter_kwargs = kwargs.pop("adapter_kwargs", None) |
|
|
|
token = hub_kwargs.pop("token", None) |
|
use_auth_token = hub_kwargs.pop("use_auth_token", None) |
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if token is not None: |
|
raise ValueError( |
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." |
|
) |
|
token = use_auth_token |
|
|
|
if token is not None: |
|
hub_kwargs["token"] = token |
|
|
|
if commit_hash is None: |
|
if not isinstance(config, PretrainedConfig): |
|
|
|
resolved_config_file = cached_file( |
|
pretrained_model_name_or_path, |
|
CONFIG_NAME, |
|
_raise_exceptions_for_missing_entries=False, |
|
_raise_exceptions_for_connection_errors=False, |
|
**hub_kwargs, |
|
) |
|
commit_hash = extract_commit_hash(resolved_config_file, commit_hash) |
|
else: |
|
commit_hash = getattr(config, "_commit_hash", None) |
|
|
|
if is_peft_available(): |
|
if adapter_kwargs is None: |
|
adapter_kwargs = {} |
|
if token is not None: |
|
adapter_kwargs["token"] = token |
|
|
|
maybe_adapter_path = find_adapter_config_file( |
|
pretrained_model_name_or_path, _commit_hash=commit_hash, **adapter_kwargs |
|
) |
|
|
|
if maybe_adapter_path is not None: |
|
with open(maybe_adapter_path, "r", encoding="utf-8") as f: |
|
adapter_config = json.load(f) |
|
|
|
adapter_kwargs["_adapter_model_path"] = pretrained_model_name_or_path |
|
pretrained_model_name_or_path = adapter_config["base_model_name_or_path"] |
|
|
|
if not isinstance(config, PretrainedConfig): |
|
kwargs_orig = copy.deepcopy(kwargs) |
|
|
|
|
|
if kwargs.get("torch_dtype", None) == "auto": |
|
_ = kwargs.pop("torch_dtype") |
|
|
|
if kwargs.get("quantization_config", None) is not None: |
|
_ = kwargs.pop("quantization_config") |
|
|
|
config, kwargs = AutoConfig.from_pretrained( |
|
pretrained_model_name_or_path, |
|
return_unused_kwargs=True, |
|
trust_remote_code=trust_remote_code, |
|
code_revision=code_revision, |
|
_commit_hash=commit_hash, |
|
**hub_kwargs, |
|
**kwargs, |
|
) |
|
|
|
|
|
if kwargs_orig.get("torch_dtype", None) == "auto": |
|
kwargs["torch_dtype"] = "auto" |
|
if kwargs_orig.get("quantization_config", None) is not None: |
|
kwargs["quantization_config"] = kwargs_orig["quantization_config"] |
|
|
|
has_remote_code = hasattr(config, "auto_map") and cls.__name__ in config.auto_map |
|
has_local_code = type(config) in cls._model_mapping.keys() |
|
trust_remote_code = resolve_trust_remote_code( |
|
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code |
|
) |
|
|
|
|
|
kwargs["adapter_kwargs"] = adapter_kwargs |
|
|
|
if has_remote_code and trust_remote_code: |
|
class_ref = config.auto_map[cls.__name__] |
|
model_class = get_class_from_dynamic_module( |
|
class_ref, pretrained_model_name_or_path, code_revision=code_revision, **hub_kwargs, **kwargs |
|
) |
|
_ = hub_kwargs.pop("code_revision", None) |
|
if os.path.isdir(pretrained_model_name_or_path): |
|
model_class.register_for_auto_class(cls.__name__) |
|
else: |
|
cls.register(config.__class__, model_class, exist_ok=True) |
|
return model_class.from_pretrained( |
|
pretrained_model_name_or_path, *model_args, config=config, **hub_kwargs, **kwargs |
|
) |
|
elif type(config) in cls._model_mapping.keys(): |
|
model_class = _get_model_class(config, cls._model_mapping) |
|
return model_class.from_pretrained( |
|
pretrained_model_name_or_path, *model_args, config=config, **hub_kwargs, **kwargs |
|
) |
|
raise ValueError( |
|
f"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\n" |
|
f"Model type should be one of {', '.join(c.__name__ for c in cls._model_mapping.keys())}." |
|
) |
|
|
|
@classmethod |
|
def register(cls, config_class, model_class, exist_ok=False): |
|
""" |
|
Register a new model for this class. |
|
|
|
Args: |
|
config_class ([`PretrainedConfig`]): |
|
The configuration corresponding to the model to register. |
|
model_class ([`PreTrainedModel`]): |
|
The model to register. |
|
""" |
|
if hasattr(model_class, "config_class") and model_class.config_class != config_class: |
|
raise ValueError( |
|
"The model class you are passing has a `config_class` attribute that is not consistent with the " |
|
f"config class you passed (model has {model_class.config_class} and you passed {config_class}. Fix " |
|
"one of those so they match!" |
|
) |
|
cls._model_mapping.register(config_class, model_class, exist_ok=exist_ok) |
|
|
|
|
|
class _BaseAutoBackboneClass(_BaseAutoModelClass): |
|
|
|
_model_mapping = None |
|
|
|
@classmethod |
|
def _load_timm_backbone_from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): |
|
requires_backends(cls, ["vision", "timm"]) |
|
from ...models.timm_backbone import TimmBackboneConfig |
|
|
|
config = kwargs.pop("config", TimmBackboneConfig()) |
|
|
|
use_timm = kwargs.pop("use_timm_backbone", True) |
|
if not use_timm: |
|
raise ValueError("`use_timm_backbone` must be `True` for timm backbones") |
|
|
|
if kwargs.get("out_features", None) is not None: |
|
raise ValueError("Cannot specify `out_features` for timm backbones") |
|
|
|
if kwargs.get("output_loading_info", False): |
|
raise ValueError("Cannot specify `output_loading_info=True` when loading from timm") |
|
|
|
num_channels = kwargs.pop("num_channels", config.num_channels) |
|
features_only = kwargs.pop("features_only", config.features_only) |
|
use_pretrained_backbone = kwargs.pop("use_pretrained_backbone", config.use_pretrained_backbone) |
|
out_indices = kwargs.pop("out_indices", config.out_indices) |
|
config = TimmBackboneConfig( |
|
backbone=pretrained_model_name_or_path, |
|
num_channels=num_channels, |
|
features_only=features_only, |
|
use_pretrained_backbone=use_pretrained_backbone, |
|
out_indices=out_indices, |
|
) |
|
return super().from_config(config, **kwargs) |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): |
|
if kwargs.get("use_timm_backbone", False): |
|
return cls._load_timm_backbone_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) |
|
|
|
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) |
|
|
|
|
|
def insert_head_doc(docstring, head_doc=""): |
|
if len(head_doc) > 0: |
|
return docstring.replace( |
|
"one of the model classes of the library ", |
|
f"one of the model classes of the library (with a {head_doc} head) ", |
|
) |
|
return docstring.replace( |
|
"one of the model classes of the library ", "one of the base model classes of the library " |
|
) |
|
|
|
|
|
def auto_class_update(cls, checkpoint_for_example="bert-base-cased", head_doc=""): |
|
|
|
model_mapping = cls._model_mapping |
|
name = cls.__name__ |
|
class_docstring = insert_head_doc(CLASS_DOCSTRING, head_doc=head_doc) |
|
cls.__doc__ = class_docstring.replace("BaseAutoModelClass", name) |
|
|
|
|
|
|
|
from_config = copy_func(_BaseAutoModelClass.from_config) |
|
from_config_docstring = insert_head_doc(FROM_CONFIG_DOCSTRING, head_doc=head_doc) |
|
from_config_docstring = from_config_docstring.replace("BaseAutoModelClass", name) |
|
from_config_docstring = from_config_docstring.replace("checkpoint_placeholder", checkpoint_for_example) |
|
from_config.__doc__ = from_config_docstring |
|
from_config = replace_list_option_in_docstrings(model_mapping._model_mapping, use_model_types=False)(from_config) |
|
cls.from_config = classmethod(from_config) |
|
|
|
if name.startswith("TF"): |
|
from_pretrained_docstring = FROM_PRETRAINED_TF_DOCSTRING |
|
elif name.startswith("Flax"): |
|
from_pretrained_docstring = FROM_PRETRAINED_FLAX_DOCSTRING |
|
else: |
|
from_pretrained_docstring = FROM_PRETRAINED_TORCH_DOCSTRING |
|
from_pretrained = copy_func(_BaseAutoModelClass.from_pretrained) |
|
from_pretrained_docstring = insert_head_doc(from_pretrained_docstring, head_doc=head_doc) |
|
from_pretrained_docstring = from_pretrained_docstring.replace("BaseAutoModelClass", name) |
|
from_pretrained_docstring = from_pretrained_docstring.replace("checkpoint_placeholder", checkpoint_for_example) |
|
shortcut = checkpoint_for_example.split("/")[-1].split("-")[0] |
|
from_pretrained_docstring = from_pretrained_docstring.replace("shortcut_placeholder", shortcut) |
|
from_pretrained.__doc__ = from_pretrained_docstring |
|
from_pretrained = replace_list_option_in_docstrings(model_mapping._model_mapping)(from_pretrained) |
|
cls.from_pretrained = classmethod(from_pretrained) |
|
return cls |
|
|
|
|
|
def get_values(model_mapping): |
|
result = [] |
|
for model in model_mapping.values(): |
|
if isinstance(model, (list, tuple)): |
|
result += list(model) |
|
else: |
|
result.append(model) |
|
|
|
return result |
|
|
|
|
|
def getattribute_from_module(module, attr): |
|
if attr is None: |
|
return None |
|
if isinstance(attr, tuple): |
|
return tuple(getattribute_from_module(module, a) for a in attr) |
|
if hasattr(module, attr): |
|
return getattr(module, attr) |
|
|
|
|
|
transformers_module = importlib.import_module("transformers") |
|
|
|
if module != transformers_module: |
|
try: |
|
return getattribute_from_module(transformers_module, attr) |
|
except ValueError: |
|
raise ValueError(f"Could not find {attr} neither in {module} nor in {transformers_module}!") |
|
else: |
|
raise ValueError(f"Could not find {attr} in {transformers_module}!") |
|
|
|
|
|
class _LazyAutoMapping(OrderedDict): |
|
""" |
|
" A mapping config to object (model or tokenizer for instance) that will load keys and values when it is accessed. |
|
|
|
Args: |
|
- config_mapping: The map model type to config class |
|
- model_mapping: The map model type to model (or tokenizer) class |
|
""" |
|
|
|
def __init__(self, config_mapping, model_mapping): |
|
self._config_mapping = config_mapping |
|
self._reverse_config_mapping = {v: k for k, v in config_mapping.items()} |
|
self._model_mapping = model_mapping |
|
self._model_mapping._model_mapping = self |
|
self._extra_content = {} |
|
self._modules = {} |
|
|
|
def __len__(self): |
|
common_keys = set(self._config_mapping.keys()).intersection(self._model_mapping.keys()) |
|
return len(common_keys) + len(self._extra_content) |
|
|
|
def __getitem__(self, key): |
|
if key in self._extra_content: |
|
return self._extra_content[key] |
|
model_type = self._reverse_config_mapping[key.__name__] |
|
if model_type in self._model_mapping: |
|
model_name = self._model_mapping[model_type] |
|
return self._load_attr_from_module(model_type, model_name) |
|
|
|
|
|
model_types = [k for k, v in self._config_mapping.items() if v == key.__name__] |
|
for mtype in model_types: |
|
if mtype in self._model_mapping: |
|
model_name = self._model_mapping[mtype] |
|
return self._load_attr_from_module(mtype, model_name) |
|
raise KeyError(key) |
|
|
|
def _load_attr_from_module(self, model_type, attr): |
|
module_name = model_type_to_module_name(model_type) |
|
if module_name not in self._modules: |
|
self._modules[module_name] = importlib.import_module(f".{module_name}", "transformers.models") |
|
return getattribute_from_module(self._modules[module_name], attr) |
|
|
|
def keys(self): |
|
mapping_keys = [ |
|
self._load_attr_from_module(key, name) |
|
for key, name in self._config_mapping.items() |
|
if key in self._model_mapping.keys() |
|
] |
|
return mapping_keys + list(self._extra_content.keys()) |
|
|
|
def get(self, key, default): |
|
try: |
|
return self.__getitem__(key) |
|
except KeyError: |
|
return default |
|
|
|
def __bool__(self): |
|
return bool(self.keys()) |
|
|
|
def values(self): |
|
mapping_values = [ |
|
self._load_attr_from_module(key, name) |
|
for key, name in self._model_mapping.items() |
|
if key in self._config_mapping.keys() |
|
] |
|
return mapping_values + list(self._extra_content.values()) |
|
|
|
def items(self): |
|
mapping_items = [ |
|
( |
|
self._load_attr_from_module(key, self._config_mapping[key]), |
|
self._load_attr_from_module(key, self._model_mapping[key]), |
|
) |
|
for key in self._model_mapping.keys() |
|
if key in self._config_mapping.keys() |
|
] |
|
return mapping_items + list(self._extra_content.items()) |
|
|
|
def __iter__(self): |
|
return iter(self.keys()) |
|
|
|
def __contains__(self, item): |
|
if item in self._extra_content: |
|
return True |
|
if not hasattr(item, "__name__") or item.__name__ not in self._reverse_config_mapping: |
|
return False |
|
model_type = self._reverse_config_mapping[item.__name__] |
|
return model_type in self._model_mapping |
|
|
|
def register(self, key, value, exist_ok=False): |
|
""" |
|
Register a new model in this mapping. |
|
""" |
|
if hasattr(key, "__name__") and key.__name__ in self._reverse_config_mapping: |
|
model_type = self._reverse_config_mapping[key.__name__] |
|
if model_type in self._model_mapping.keys() and not exist_ok: |
|
raise ValueError(f"'{key}' is already used by a Transformers model.") |
|
|
|
self._extra_content[key] = value |
|
|