|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Audio/Text processor class for CLAP |
|
""" |
|
|
|
from ...processing_utils import ProcessorMixin |
|
from ...tokenization_utils_base import BatchEncoding |
|
|
|
|
|
class ClapProcessor(ProcessorMixin): |
|
r""" |
|
Constructs a CLAP processor which wraps a CLAP feature extractor and a RoBerta tokenizer into a single processor. |
|
|
|
[`ClapProcessor`] offers all the functionalities of [`ClapFeatureExtractor`] and [`RobertaTokenizerFast`]. See the |
|
[`~ClapProcessor.__call__`] and [`~ClapProcessor.decode`] for more information. |
|
|
|
Args: |
|
feature_extractor ([`ClapFeatureExtractor`]): |
|
The audio processor is a required input. |
|
tokenizer ([`RobertaTokenizerFast`]): |
|
The tokenizer is a required input. |
|
""" |
|
feature_extractor_class = "ClapFeatureExtractor" |
|
tokenizer_class = ("RobertaTokenizer", "RobertaTokenizerFast") |
|
|
|
def __init__(self, feature_extractor, tokenizer): |
|
super().__init__(feature_extractor, tokenizer) |
|
|
|
def __call__(self, text=None, audios=None, return_tensors=None, **kwargs): |
|
""" |
|
Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `text` |
|
and `kwargs` arguments to RobertaTokenizerFast's [`~RobertaTokenizerFast.__call__`] if `text` is not `None` to |
|
encode the text. To prepare the audio(s), this method forwards the `audios` and `kwrags` arguments to |
|
ClapFeatureExtractor's [`~ClapFeatureExtractor.__call__`] if `audios` is not `None`. Please refer to the |
|
doctsring of the above two methods for more information. |
|
|
|
Args: |
|
text (`str`, `List[str]`, `List[List[str]]`): |
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings |
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set |
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). |
|
audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`): |
|
The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case |
|
of a NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels, |
|
and T the sample length of the audio. |
|
|
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
If set, will return tensors of a particular framework. Acceptable values are: |
|
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects. |
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
- `'np'`: Return NumPy `np.ndarray` objects. |
|
- `'jax'`: Return JAX `jnp.ndarray` objects. |
|
|
|
Returns: |
|
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields: |
|
|
|
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. |
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when |
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not |
|
`None`). |
|
- **audio_features** -- Audio features to be fed to a model. Returned when `audios` is not `None`. |
|
""" |
|
sampling_rate = kwargs.pop("sampling_rate", None) |
|
|
|
if text is None and audios is None: |
|
raise ValueError("You have to specify either text or audios. Both cannot be none.") |
|
|
|
if text is not None: |
|
encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs) |
|
|
|
if audios is not None: |
|
audio_features = self.feature_extractor( |
|
audios, sampling_rate=sampling_rate, return_tensors=return_tensors, **kwargs |
|
) |
|
|
|
if text is not None and audios is not None: |
|
encoding["input_features"] = audio_features.input_features |
|
return encoding |
|
elif text is not None: |
|
return encoding |
|
else: |
|
return BatchEncoding(data=dict(**audio_features), tensor_type=return_tensors) |
|
|
|
def batch_decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please |
|
refer to the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
def decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer |
|
to the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.decode(*args, **kwargs) |
|
|
|
@property |
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
feature_extractor_input_names = self.feature_extractor.model_input_names |
|
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names)) |
|
|