|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes for Bloom.""" |
|
|
|
|
|
import pickle |
|
from typing import Optional, Tuple |
|
|
|
from ...tokenization_utils_base import BatchEncoding |
|
from ...tokenization_utils_fast import PreTrainedTokenizerFast |
|
from ...utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = {"tokenizer_file": "tokenizer.json"} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"tokenizer_file": { |
|
"bigscience/tokenizer": "https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json", |
|
"bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json", |
|
"bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json", |
|
"bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json", |
|
"bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json", |
|
"bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json", |
|
"bigscience/bloom": "https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json", |
|
}, |
|
} |
|
|
|
|
|
class BloomTokenizerFast(PreTrainedTokenizerFast): |
|
""" |
|
Construct a "fast" Bloom tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level |
|
Byte-Pair-Encoding. |
|
|
|
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will |
|
be encoded differently whether it is at the beginning of the sentence (without space) or not: |
|
|
|
```python |
|
>>> from transformers import BloomTokenizerFast |
|
|
|
>>> tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom") |
|
>>> tokenizer("Hello world")["input_ids"] |
|
[59414, 8876] |
|
|
|
>>> tokenizer(" Hello world")["input_ids"] |
|
[86153, 8876] |
|
``` |
|
|
|
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since |
|
the model was not pretrained this way, it might yield a decrease in performance. |
|
|
|
<Tip> |
|
|
|
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. |
|
|
|
</Tip> |
|
|
|
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should |
|
refer to this superclass for more information regarding those methods. |
|
|
|
Args: |
|
vocab_file (`str`): |
|
Path to the vocabulary file. |
|
merges_file (`str`): |
|
Path to the merges file. |
|
errors (`str`, *optional*, defaults to `"replace"`): |
|
Paradigm to follow when decoding bytes to UTF-8. See |
|
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. |
|
unk_token (`str`, *optional*, defaults to `<|endoftext|>`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
bos_token (`str`, *optional*, defaults to `<|endoftext|>`): |
|
The beginning of sequence token. |
|
eos_token (`str`, *optional*, defaults to `<|endoftext|>`): |
|
The end of sequence token. |
|
add_prefix_space (`bool`, *optional*, defaults to `False`): |
|
Whether or not to add an initial space to the input. This allows to treat the leading word just as any |
|
other word. (Bloom tokenizer detect beginning of words by the preceding space). |
|
trim_offsets (`bool`, *optional*, defaults to `True`): |
|
Whether or not the post-processing step should trim offsets to avoid including whitespaces. |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
model_input_names = ["input_ids", "attention_mask"] |
|
slow_tokenizer_class = None |
|
|
|
|
|
def __init__( |
|
self, |
|
vocab_file=None, |
|
merges_file=None, |
|
tokenizer_file=None, |
|
unk_token="<unk>", |
|
bos_token="<s>", |
|
eos_token="</s>", |
|
pad_token="<pad>", |
|
add_prefix_space=False, |
|
clean_up_tokenization_spaces=False, |
|
**kwargs, |
|
): |
|
super().__init__( |
|
vocab_file, |
|
merges_file, |
|
tokenizer_file=tokenizer_file, |
|
unk_token=unk_token, |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
pad_token=pad_token, |
|
add_prefix_space=add_prefix_space, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
**kwargs, |
|
) |
|
|
|
|
|
pre_tok_state = pickle.dumps(self.backend_tokenizer.pre_tokenizer) |
|
decoder_state = pickle.dumps(self.backend_tokenizer.decoder) |
|
|
|
if add_prefix_space: |
|
pre_tok_state = pre_tok_state.replace(b'"add_prefix_space":false', b'"add_prefix_space": true') |
|
decoder_state = decoder_state.replace(b'"add_prefix_space":false', b'"add_prefix_space": true') |
|
self.backend_tokenizer.pre_tokenizer = pickle.loads(pre_tok_state) |
|
self.backend_tokenizer.decoder = pickle.loads(decoder_state) |
|
|
|
self.add_prefix_space = add_prefix_space |
|
|
|
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: |
|
is_split_into_words = kwargs.get("is_split_into_words", False) |
|
if not (self.add_prefix_space or not is_split_into_words): |
|
raise Exception( |
|
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" |
|
" pretokenized inputs." |
|
) |
|
|
|
return super()._batch_encode_plus(*args, **kwargs) |
|
|
|
def _encode_plus(self, *args, **kwargs) -> BatchEncoding: |
|
is_split_into_words = kwargs.get("is_split_into_words", False) |
|
|
|
if not (self.add_prefix_space or not is_split_into_words): |
|
raise Exception( |
|
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" |
|
" pretokenized inputs." |
|
) |
|
|
|
return super()._encode_plus(*args, **kwargs) |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
files = self._tokenizer.model.save(save_directory, name=filename_prefix) |
|
return tuple(files) |
|
|
|
@property |
|
|
|
def default_chat_template(self): |
|
""" |
|
A simple chat template that ignores role information and just concatenates messages with EOS tokens. |
|
""" |
|
return "{% for message in messages %}" "{{ message.content }}{{ eos_token }}" "{% endfor %}" |
|
|