File size: 28,264 Bytes
06ba6ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
import os
from functools import partial, reduce
from typing import TYPE_CHECKING, Callable, Dict, Optional, Tuple, Type, Union

import transformers

from .. import PretrainedConfig, is_tf_available, is_torch_available
from ..utils import TF2_WEIGHTS_NAME, WEIGHTS_NAME, logging
from .config import OnnxConfig


if TYPE_CHECKING:
    from transformers import PreTrainedModel, TFPreTrainedModel


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

if is_torch_available():
    from transformers.models.auto import (
        AutoModel,
        AutoModelForCausalLM,
        AutoModelForImageClassification,
        AutoModelForImageSegmentation,
        AutoModelForMaskedImageModeling,
        AutoModelForMaskedLM,
        AutoModelForMultipleChoice,
        AutoModelForObjectDetection,
        AutoModelForQuestionAnswering,
        AutoModelForSemanticSegmentation,
        AutoModelForSeq2SeqLM,
        AutoModelForSequenceClassification,
        AutoModelForSpeechSeq2Seq,
        AutoModelForTokenClassification,
        AutoModelForVision2Seq,
    )
if is_tf_available():
    from transformers.models.auto import (
        TFAutoModel,
        TFAutoModelForCausalLM,
        TFAutoModelForMaskedLM,
        TFAutoModelForMultipleChoice,
        TFAutoModelForQuestionAnswering,
        TFAutoModelForSemanticSegmentation,
        TFAutoModelForSeq2SeqLM,
        TFAutoModelForSequenceClassification,
        TFAutoModelForTokenClassification,
    )
if not is_torch_available() and not is_tf_available():
    logger.warning(
        "The ONNX export features are only supported for PyTorch or TensorFlow. You will not be able to export models"
        " without one of these libraries installed."
    )


def supported_features_mapping(
    *supported_features: str, onnx_config_cls: str = None
) -> Dict[str, Callable[[PretrainedConfig], OnnxConfig]]:
    """
    Generate the mapping between supported the features and their corresponding OnnxConfig for a given model.

    Args:
        *supported_features: The names of the supported features.
        onnx_config_cls: The OnnxConfig full name corresponding to the model.

    Returns:
        The dictionary mapping a feature to an OnnxConfig constructor.
    """
    if onnx_config_cls is None:
        raise ValueError("A OnnxConfig class must be provided")

    config_cls = transformers
    for attr_name in onnx_config_cls.split("."):
        config_cls = getattr(config_cls, attr_name)
    mapping = {}
    for feature in supported_features:
        if "-with-past" in feature:
            task = feature.replace("-with-past", "")
            mapping[feature] = partial(config_cls.with_past, task=task)
        else:
            mapping[feature] = partial(config_cls.from_model_config, task=feature)

    return mapping


class FeaturesManager:
    _TASKS_TO_AUTOMODELS = {}
    _TASKS_TO_TF_AUTOMODELS = {}
    if is_torch_available():
        _TASKS_TO_AUTOMODELS = {
            "default": AutoModel,
            "masked-lm": AutoModelForMaskedLM,
            "causal-lm": AutoModelForCausalLM,
            "seq2seq-lm": AutoModelForSeq2SeqLM,
            "sequence-classification": AutoModelForSequenceClassification,
            "token-classification": AutoModelForTokenClassification,
            "multiple-choice": AutoModelForMultipleChoice,
            "object-detection": AutoModelForObjectDetection,
            "question-answering": AutoModelForQuestionAnswering,
            "image-classification": AutoModelForImageClassification,
            "image-segmentation": AutoModelForImageSegmentation,
            "masked-im": AutoModelForMaskedImageModeling,
            "semantic-segmentation": AutoModelForSemanticSegmentation,
            "vision2seq-lm": AutoModelForVision2Seq,
            "speech2seq-lm": AutoModelForSpeechSeq2Seq,
        }
    if is_tf_available():
        _TASKS_TO_TF_AUTOMODELS = {
            "default": TFAutoModel,
            "masked-lm": TFAutoModelForMaskedLM,
            "causal-lm": TFAutoModelForCausalLM,
            "seq2seq-lm": TFAutoModelForSeq2SeqLM,
            "sequence-classification": TFAutoModelForSequenceClassification,
            "token-classification": TFAutoModelForTokenClassification,
            "multiple-choice": TFAutoModelForMultipleChoice,
            "question-answering": TFAutoModelForQuestionAnswering,
            "semantic-segmentation": TFAutoModelForSemanticSegmentation,
        }

    # Set of model topologies we support associated to the features supported by each topology and the factory
    _SUPPORTED_MODEL_TYPE = {
        "albert": supported_features_mapping(
            "default",
            "masked-lm",
            "sequence-classification",
            "multiple-choice",
            "token-classification",
            "question-answering",
            onnx_config_cls="models.albert.AlbertOnnxConfig",
        ),
        "bart": supported_features_mapping(
            "default",
            "default-with-past",
            "causal-lm",
            "causal-lm-with-past",
            "seq2seq-lm",
            "seq2seq-lm-with-past",
            "sequence-classification",
            "question-answering",
            onnx_config_cls="models.bart.BartOnnxConfig",
        ),
        # BEiT cannot be used with the masked image modeling autoclass, so this feature is excluded here
        "beit": supported_features_mapping(
            "default", "image-classification", onnx_config_cls="models.beit.BeitOnnxConfig"
        ),
        "bert": supported_features_mapping(
            "default",
            "masked-lm",
            "causal-lm",
            "sequence-classification",
            "multiple-choice",
            "token-classification",
            "question-answering",
            onnx_config_cls="models.bert.BertOnnxConfig",
        ),
        "big-bird": supported_features_mapping(
            "default",
            "masked-lm",
            "causal-lm",
            "sequence-classification",
            "multiple-choice",
            "token-classification",
            "question-answering",
            onnx_config_cls="models.big_bird.BigBirdOnnxConfig",
        ),
        "bigbird-pegasus": supported_features_mapping(
            "default",
            "default-with-past",
            "causal-lm",
            "causal-lm-with-past",
            "seq2seq-lm",
            "seq2seq-lm-with-past",
            "sequence-classification",
            "question-answering",
            onnx_config_cls="models.bigbird_pegasus.BigBirdPegasusOnnxConfig",
        ),
        "blenderbot": supported_features_mapping(
            "default",
            "default-with-past",
            "causal-lm",
            "causal-lm-with-past",
            "seq2seq-lm",
            "seq2seq-lm-with-past",
            onnx_config_cls="models.blenderbot.BlenderbotOnnxConfig",
        ),
        "blenderbot-small": supported_features_mapping(
            "default",
            "default-with-past",
            "causal-lm",
            "causal-lm-with-past",
            "seq2seq-lm",
            "seq2seq-lm-with-past",
            onnx_config_cls="models.blenderbot_small.BlenderbotSmallOnnxConfig",
        ),
        "bloom": supported_features_mapping(
            "default",
            "default-with-past",
            "causal-lm",
            "causal-lm-with-past",
            "sequence-classification",
            "token-classification",
            onnx_config_cls="models.bloom.BloomOnnxConfig",
        ),
        "camembert": supported_features_mapping(
            "default",
            "masked-lm",
            "causal-lm",
            "sequence-classification",
            "multiple-choice",
            "token-classification",
            "question-answering",
            onnx_config_cls="models.camembert.CamembertOnnxConfig",
        ),
        "clip": supported_features_mapping(
            "default",
            onnx_config_cls="models.clip.CLIPOnnxConfig",
        ),
        "codegen": supported_features_mapping(
            "default",
            "causal-lm",
            onnx_config_cls="models.codegen.CodeGenOnnxConfig",
        ),
        "convbert": supported_features_mapping(
            "default",
            "masked-lm",
            "sequence-classification",
            "multiple-choice",
            "token-classification",
            "question-answering",
            onnx_config_cls="models.convbert.ConvBertOnnxConfig",
        ),
        "convnext": supported_features_mapping(
            "default",
            "image-classification",
            onnx_config_cls="models.convnext.ConvNextOnnxConfig",
        ),
        "data2vec-text": supported_features_mapping(
            "default",
            "masked-lm",
            "sequence-classification",
            "multiple-choice",
            "token-classification",
            "question-answering",
            onnx_config_cls="models.data2vec.Data2VecTextOnnxConfig",
        ),
        "data2vec-vision": supported_features_mapping(
            "default",
            "image-classification",
            # ONNX doesn't support `adaptive_avg_pool2d` yet
            # "semantic-segmentation",
            onnx_config_cls="models.data2vec.Data2VecVisionOnnxConfig",
        ),
        "deberta": supported_features_mapping(
            "default",
            "masked-lm",
            "sequence-classification",
            "token-classification",
            "question-answering",
            onnx_config_cls="models.deberta.DebertaOnnxConfig",
        ),
        "deberta-v2": supported_features_mapping(
            "default",
            "masked-lm",
            "sequence-classification",
            "multiple-choice",
            "token-classification",
            "question-answering",
            onnx_config_cls="models.deberta_v2.DebertaV2OnnxConfig",
        ),
        "deit": supported_features_mapping(
            "default", "image-classification", onnx_config_cls="models.deit.DeiTOnnxConfig"
        ),
        "detr": supported_features_mapping(
            "default",
            "object-detection",
            "image-segmentation",
            onnx_config_cls="models.detr.DetrOnnxConfig",
        ),
        "distilbert": supported_features_mapping(
            "default",
            "masked-lm",
            "sequence-classification",
            "multiple-choice",
            "token-classification",
            "question-answering",
            onnx_config_cls="models.distilbert.DistilBertOnnxConfig",
        ),
        "electra": supported_features_mapping(
            "default",
            "masked-lm",
            "causal-lm",
            "sequence-classification",
            "multiple-choice",
            "token-classification",
            "question-answering",
            onnx_config_cls="models.electra.ElectraOnnxConfig",
        ),
        "flaubert": supported_features_mapping(
            "default",
            "masked-lm",
            "causal-lm",
            "sequence-classification",
            "multiple-choice",
            "token-classification",
            "question-answering",
            onnx_config_cls="models.flaubert.FlaubertOnnxConfig",
        ),
        "gpt2": supported_features_mapping(
            "default",
            "default-with-past",
            "causal-lm",
            "causal-lm-with-past",
            "sequence-classification",
            "token-classification",
            onnx_config_cls="models.gpt2.GPT2OnnxConfig",
        ),
        "gptj": supported_features_mapping(
            "default",
            "default-with-past",
            "causal-lm",
            "causal-lm-with-past",
            "question-answering",
            "sequence-classification",
            onnx_config_cls="models.gptj.GPTJOnnxConfig",
        ),
        "gpt-neo": supported_features_mapping(
            "default",
            "default-with-past",
            "causal-lm",
            "causal-lm-with-past",
            "sequence-classification",
            onnx_config_cls="models.gpt_neo.GPTNeoOnnxConfig",
        ),
        "groupvit": supported_features_mapping(
            "default",
            onnx_config_cls="models.groupvit.GroupViTOnnxConfig",
        ),
        "ibert": supported_features_mapping(
            "default",
            "masked-lm",
            "sequence-classification",
            "multiple-choice",
            "token-classification",
            "question-answering",
            onnx_config_cls="models.ibert.IBertOnnxConfig",
        ),
        "imagegpt": supported_features_mapping(
            "default", "image-classification", onnx_config_cls="models.imagegpt.ImageGPTOnnxConfig"
        ),
        "layoutlm": supported_features_mapping(
            "default",
            "masked-lm",
            "sequence-classification",
            "token-classification",
            onnx_config_cls="models.layoutlm.LayoutLMOnnxConfig",
        ),
        "layoutlmv3": supported_features_mapping(
            "default",
            "question-answering",
            "sequence-classification",
            "token-classification",
            onnx_config_cls="models.layoutlmv3.LayoutLMv3OnnxConfig",
        ),
        "levit": supported_features_mapping(
            "default", "image-classification", onnx_config_cls="models.levit.LevitOnnxConfig"
        ),
        "longt5": supported_features_mapping(
            "default",
            "default-with-past",
            "seq2seq-lm",
            "seq2seq-lm-with-past",
            onnx_config_cls="models.longt5.LongT5OnnxConfig",
        ),
        "longformer": supported_features_mapping(
            "default",
            "masked-lm",
            "multiple-choice",
            "question-answering",
            "sequence-classification",
            "token-classification",
            onnx_config_cls="models.longformer.LongformerOnnxConfig",
        ),
        "marian": supported_features_mapping(
            "default",
            "default-with-past",
            "seq2seq-lm",
            "seq2seq-lm-with-past",
            "causal-lm",
            "causal-lm-with-past",
            onnx_config_cls="models.marian.MarianOnnxConfig",
        ),
        "mbart": supported_features_mapping(
            "default",
            "default-with-past",
            "causal-lm",
            "causal-lm-with-past",
            "seq2seq-lm",
            "seq2seq-lm-with-past",
            "sequence-classification",
            "question-answering",
            onnx_config_cls="models.mbart.MBartOnnxConfig",
        ),
        "mobilebert": supported_features_mapping(
            "default",
            "masked-lm",
            "sequence-classification",
            "multiple-choice",
            "token-classification",
            "question-answering",
            onnx_config_cls="models.mobilebert.MobileBertOnnxConfig",
        ),
        "mobilenet-v1": supported_features_mapping(
            "default",
            "image-classification",
            onnx_config_cls="models.mobilenet_v1.MobileNetV1OnnxConfig",
        ),
        "mobilenet-v2": supported_features_mapping(
            "default",
            "image-classification",
            onnx_config_cls="models.mobilenet_v2.MobileNetV2OnnxConfig",
        ),
        "mobilevit": supported_features_mapping(
            "default",
            "image-classification",
            onnx_config_cls="models.mobilevit.MobileViTOnnxConfig",
        ),
        "mt5": supported_features_mapping(
            "default",
            "default-with-past",
            "seq2seq-lm",
            "seq2seq-lm-with-past",
            onnx_config_cls="models.mt5.MT5OnnxConfig",
        ),
        "m2m-100": supported_features_mapping(
            "default",
            "default-with-past",
            "seq2seq-lm",
            "seq2seq-lm-with-past",
            onnx_config_cls="models.m2m_100.M2M100OnnxConfig",
        ),
        "owlvit": supported_features_mapping(
            "default",
            onnx_config_cls="models.owlvit.OwlViTOnnxConfig",
        ),
        "perceiver": supported_features_mapping(
            "image-classification",
            "masked-lm",
            "sequence-classification",
            onnx_config_cls="models.perceiver.PerceiverOnnxConfig",
        ),
        "poolformer": supported_features_mapping(
            "default", "image-classification", onnx_config_cls="models.poolformer.PoolFormerOnnxConfig"
        ),
        "rembert": supported_features_mapping(
            "default",
            "masked-lm",
            "causal-lm",
            "sequence-classification",
            "multiple-choice",
            "token-classification",
            "question-answering",
            onnx_config_cls="models.rembert.RemBertOnnxConfig",
        ),
        "resnet": supported_features_mapping(
            "default",
            "image-classification",
            onnx_config_cls="models.resnet.ResNetOnnxConfig",
        ),
        "roberta": supported_features_mapping(
            "default",
            "masked-lm",
            "causal-lm",
            "sequence-classification",
            "multiple-choice",
            "token-classification",
            "question-answering",
            onnx_config_cls="models.roberta.RobertaOnnxConfig",
        ),
        "roformer": supported_features_mapping(
            "default",
            "masked-lm",
            "causal-lm",
            "sequence-classification",
            "token-classification",
            "multiple-choice",
            "question-answering",
            "token-classification",
            onnx_config_cls="models.roformer.RoFormerOnnxConfig",
        ),
        "segformer": supported_features_mapping(
            "default",
            "image-classification",
            "semantic-segmentation",
            onnx_config_cls="models.segformer.SegformerOnnxConfig",
        ),
        "squeezebert": supported_features_mapping(
            "default",
            "masked-lm",
            "sequence-classification",
            "multiple-choice",
            "token-classification",
            "question-answering",
            onnx_config_cls="models.squeezebert.SqueezeBertOnnxConfig",
        ),
        "swin": supported_features_mapping(
            "default", "image-classification", onnx_config_cls="models.swin.SwinOnnxConfig"
        ),
        "t5": supported_features_mapping(
            "default",
            "default-with-past",
            "seq2seq-lm",
            "seq2seq-lm-with-past",
            onnx_config_cls="models.t5.T5OnnxConfig",
        ),
        "vision-encoder-decoder": supported_features_mapping(
            "vision2seq-lm", onnx_config_cls="models.vision_encoder_decoder.VisionEncoderDecoderOnnxConfig"
        ),
        "vit": supported_features_mapping(
            "default", "image-classification", onnx_config_cls="models.vit.ViTOnnxConfig"
        ),
        "whisper": supported_features_mapping(
            "default",
            "default-with-past",
            "speech2seq-lm",
            "speech2seq-lm-with-past",
            onnx_config_cls="models.whisper.WhisperOnnxConfig",
        ),
        "xlm": supported_features_mapping(
            "default",
            "masked-lm",
            "causal-lm",
            "sequence-classification",
            "multiple-choice",
            "token-classification",
            "question-answering",
            onnx_config_cls="models.xlm.XLMOnnxConfig",
        ),
        "xlm-roberta": supported_features_mapping(
            "default",
            "masked-lm",
            "causal-lm",
            "sequence-classification",
            "multiple-choice",
            "token-classification",
            "question-answering",
            onnx_config_cls="models.xlm_roberta.XLMRobertaOnnxConfig",
        ),
        "yolos": supported_features_mapping(
            "default",
            "object-detection",
            onnx_config_cls="models.yolos.YolosOnnxConfig",
        ),
    }

    AVAILABLE_FEATURES = sorted(reduce(lambda s1, s2: s1 | s2, (v.keys() for v in _SUPPORTED_MODEL_TYPE.values())))

    @staticmethod
    def get_supported_features_for_model_type(
        model_type: str, model_name: Optional[str] = None
    ) -> Dict[str, Callable[[PretrainedConfig], OnnxConfig]]:
        """
        Tries to retrieve the feature -> OnnxConfig constructor map from the model type.

        Args:
            model_type (`str`):
                The model type to retrieve the supported features for.
            model_name (`str`, *optional*):
                The name attribute of the model object, only used for the exception message.

        Returns:
            The dictionary mapping each feature to a corresponding OnnxConfig constructor.
        """
        model_type = model_type.lower()
        if model_type not in FeaturesManager._SUPPORTED_MODEL_TYPE:
            model_type_and_model_name = f"{model_type} ({model_name})" if model_name else model_type
            raise KeyError(
                f"{model_type_and_model_name} is not supported yet. "
                f"Only {list(FeaturesManager._SUPPORTED_MODEL_TYPE.keys())} are supported. "
                f"If you want to support {model_type} please propose a PR or open up an issue."
            )
        return FeaturesManager._SUPPORTED_MODEL_TYPE[model_type]

    @staticmethod
    def feature_to_task(feature: str) -> str:
        return feature.replace("-with-past", "")

    @staticmethod
    def _validate_framework_choice(framework: str):
        """
        Validates if the framework requested for the export is both correct and available, otherwise throws an
        exception.
        """
        if framework not in ["pt", "tf"]:
            raise ValueError(
                f"Only two frameworks are supported for ONNX export: pt or tf, but {framework} was provided."
            )
        elif framework == "pt" and not is_torch_available():
            raise RuntimeError("Cannot export model to ONNX using PyTorch because no PyTorch package was found.")
        elif framework == "tf" and not is_tf_available():
            raise RuntimeError("Cannot export model to ONNX using TensorFlow because no TensorFlow package was found.")

    @staticmethod
    def get_model_class_for_feature(feature: str, framework: str = "pt") -> Type:
        """
        Attempts to retrieve an AutoModel class from a feature name.

        Args:
            feature (`str`):
                The feature required.
            framework (`str`, *optional*, defaults to `"pt"`):
                The framework to use for the export.

        Returns:
            The AutoModel class corresponding to the feature.
        """
        task = FeaturesManager.feature_to_task(feature)
        FeaturesManager._validate_framework_choice(framework)
        if framework == "pt":
            task_to_automodel = FeaturesManager._TASKS_TO_AUTOMODELS
        else:
            task_to_automodel = FeaturesManager._TASKS_TO_TF_AUTOMODELS
        if task not in task_to_automodel:
            raise KeyError(
                f"Unknown task: {feature}. Possible values are {list(FeaturesManager._TASKS_TO_AUTOMODELS.values())}"
            )

        return task_to_automodel[task]

    @staticmethod
    def determine_framework(model: str, framework: str = None) -> str:
        """
        Determines the framework to use for the export.

        The priority is in the following order:
            1. User input via `framework`.
            2. If local checkpoint is provided, use the same framework as the checkpoint.
            3. Available framework in environment, with priority given to PyTorch

        Args:
            model (`str`):
                The name of the model to export.
            framework (`str`, *optional*, defaults to `None`):
                The framework to use for the export. See above for priority if none provided.

        Returns:
            The framework to use for the export.

        """
        if framework is not None:
            return framework

        framework_map = {"pt": "PyTorch", "tf": "TensorFlow"}
        exporter_map = {"pt": "torch", "tf": "tf2onnx"}

        if os.path.isdir(model):
            if os.path.isfile(os.path.join(model, WEIGHTS_NAME)):
                framework = "pt"
            elif os.path.isfile(os.path.join(model, TF2_WEIGHTS_NAME)):
                framework = "tf"
            else:
                raise FileNotFoundError(
                    "Cannot determine framework from given checkpoint location."
                    f" There should be a {WEIGHTS_NAME} for PyTorch"
                    f" or {TF2_WEIGHTS_NAME} for TensorFlow."
                )
            logger.info(f"Local {framework_map[framework]} model found.")
        else:
            if is_torch_available():
                framework = "pt"
            elif is_tf_available():
                framework = "tf"
            else:
                raise EnvironmentError("Neither PyTorch nor TensorFlow found in environment. Cannot export to ONNX.")

        logger.info(f"Framework not requested. Using {exporter_map[framework]} to export to ONNX.")

        return framework

    @staticmethod
    def get_model_from_feature(
        feature: str, model: str, framework: str = None, cache_dir: str = None
    ) -> Union["PreTrainedModel", "TFPreTrainedModel"]:
        """
        Attempts to retrieve a model from a model's name and the feature to be enabled.

        Args:
            feature (`str`):
                The feature required.
            model (`str`):
                The name of the model to export.
            framework (`str`, *optional*, defaults to `None`):
                The framework to use for the export. See `FeaturesManager.determine_framework` for the priority should
                none be provided.

        Returns:
            The instance of the model.

        """
        framework = FeaturesManager.determine_framework(model, framework)
        model_class = FeaturesManager.get_model_class_for_feature(feature, framework)
        try:
            model = model_class.from_pretrained(model, cache_dir=cache_dir)
        except OSError:
            if framework == "pt":
                logger.info("Loading TensorFlow model in PyTorch before exporting to ONNX.")
                model = model_class.from_pretrained(model, from_tf=True, cache_dir=cache_dir)
            else:
                logger.info("Loading PyTorch model in TensorFlow before exporting to ONNX.")
                model = model_class.from_pretrained(model, from_pt=True, cache_dir=cache_dir)
        return model

    @staticmethod
    def check_supported_model_or_raise(
        model: Union["PreTrainedModel", "TFPreTrainedModel"], feature: str = "default"
    ) -> Tuple[str, Callable]:
        """
        Check whether or not the model has the requested features.

        Args:
            model: The model to export.
            feature: The name of the feature to check if it is available.

        Returns:
            (str) The type of the model (OnnxConfig) The OnnxConfig instance holding the model export properties.

        """
        model_type = model.config.model_type.replace("_", "-")
        model_name = getattr(model, "name", "")
        model_features = FeaturesManager.get_supported_features_for_model_type(model_type, model_name=model_name)
        if feature not in model_features:
            raise ValueError(
                f"{model.config.model_type} doesn't support feature {feature}. Supported values are: {model_features}"
            )

        return model.config.model_type, FeaturesManager._SUPPORTED_MODEL_TYPE[model_type][feature]

    def get_config(model_type: str, feature: str) -> OnnxConfig:
        """
        Gets the OnnxConfig for a model_type and feature combination.

        Args:
            model_type (`str`):
                The model type to retrieve the config for.
            feature (`str`):
                The feature to retrieve the config for.

        Returns:
            `OnnxConfig`: config for the combination
        """
        return FeaturesManager._SUPPORTED_MODEL_TYPE[model_type][feature]