File size: 21,064 Bytes
06ba6ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" AutoImageProcessor class."""
import importlib
import json
import os
import warnings
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all image processors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...image_processing_utils import ImageProcessingMixin
from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
logger = logging.get_logger(__name__)
IMAGE_PROCESSOR_MAPPING_NAMES = OrderedDict(
[
("align", "EfficientNetImageProcessor"),
("beit", "BeitImageProcessor"),
("bit", "BitImageProcessor"),
("blip", "BlipImageProcessor"),
("blip-2", "BlipImageProcessor"),
("bridgetower", "BridgeTowerImageProcessor"),
("chinese_clip", "ChineseCLIPImageProcessor"),
("clip", "CLIPImageProcessor"),
("clipseg", "ViTImageProcessor"),
("conditional_detr", "ConditionalDetrImageProcessor"),
("convnext", "ConvNextImageProcessor"),
("convnextv2", "ConvNextImageProcessor"),
("cvt", "ConvNextImageProcessor"),
("data2vec-vision", "BeitImageProcessor"),
("deformable_detr", "DeformableDetrImageProcessor"),
("deit", "DeiTImageProcessor"),
("deta", "DetaImageProcessor"),
("detr", "DetrImageProcessor"),
("dinat", "ViTImageProcessor"),
("dinov2", "BitImageProcessor"),
("donut-swin", "DonutImageProcessor"),
("dpt", "DPTImageProcessor"),
("efficientformer", "EfficientFormerImageProcessor"),
("efficientnet", "EfficientNetImageProcessor"),
("flava", "FlavaImageProcessor"),
("focalnet", "BitImageProcessor"),
("git", "CLIPImageProcessor"),
("glpn", "GLPNImageProcessor"),
("groupvit", "CLIPImageProcessor"),
("idefics", "IdeficsImageProcessor"),
("imagegpt", "ImageGPTImageProcessor"),
("instructblip", "BlipImageProcessor"),
("layoutlmv2", "LayoutLMv2ImageProcessor"),
("layoutlmv3", "LayoutLMv3ImageProcessor"),
("levit", "LevitImageProcessor"),
("mask2former", "Mask2FormerImageProcessor"),
("maskformer", "MaskFormerImageProcessor"),
("mgp-str", "ViTImageProcessor"),
("mobilenet_v1", "MobileNetV1ImageProcessor"),
("mobilenet_v2", "MobileNetV2ImageProcessor"),
("mobilevit", "MobileViTImageProcessor"),
("mobilevit", "MobileViTImageProcessor"),
("mobilevitv2", "MobileViTImageProcessor"),
("nat", "ViTImageProcessor"),
("nougat", "NougatImageProcessor"),
("oneformer", "OneFormerImageProcessor"),
("owlvit", "OwlViTImageProcessor"),
("perceiver", "PerceiverImageProcessor"),
("pix2struct", "Pix2StructImageProcessor"),
("poolformer", "PoolFormerImageProcessor"),
("pvt", "PvtImageProcessor"),
("regnet", "ConvNextImageProcessor"),
("resnet", "ConvNextImageProcessor"),
("sam", "SamImageProcessor"),
("segformer", "SegformerImageProcessor"),
("swiftformer", "ViTImageProcessor"),
("swin", "ViTImageProcessor"),
("swin2sr", "Swin2SRImageProcessor"),
("swinv2", "ViTImageProcessor"),
("table-transformer", "DetrImageProcessor"),
("timesformer", "VideoMAEImageProcessor"),
("tvlt", "TvltImageProcessor"),
("upernet", "SegformerImageProcessor"),
("van", "ConvNextImageProcessor"),
("videomae", "VideoMAEImageProcessor"),
("vilt", "ViltImageProcessor"),
("vit", "ViTImageProcessor"),
("vit_hybrid", "ViTHybridImageProcessor"),
("vit_mae", "ViTImageProcessor"),
("vit_msn", "ViTImageProcessor"),
("vitmatte", "VitMatteImageProcessor"),
("xclip", "CLIPImageProcessor"),
("yolos", "YolosImageProcessor"),
]
)
IMAGE_PROCESSOR_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES)
def image_processor_class_from_name(class_name: str):
for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items():
if class_name in extractors:
module_name = model_type_to_module_name(module_name)
module = importlib.import_module(f".{module_name}", "transformers.models")
try:
return getattr(module, class_name)
except AttributeError:
continue
for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items():
if getattr(extractor, "__name__", None) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
main_module = importlib.import_module("transformers")
if hasattr(main_module, class_name):
return getattr(main_module, class_name)
return None
def get_image_processor_config(
pretrained_model_name_or_path: Union[str, os.PathLike],
cache_dir: Optional[Union[str, os.PathLike]] = None,
force_download: bool = False,
resume_download: bool = False,
proxies: Optional[Dict[str, str]] = None,
token: Optional[Union[bool, str]] = None,
revision: Optional[str] = None,
local_files_only: bool = False,
**kwargs,
):
"""
Loads the image processor configuration from a pretrained model image processor configuration.
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
under a user or organization name, like `dbmdz/bert-base-german-cased`.
- a path to a *directory* containing a configuration file saved using the
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force to (re-)download the configuration files and override the cached versions if they
exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
local_files_only (`bool`, *optional*, defaults to `False`):
If `True`, will only try to load the image processor configuration from local files.
<Tip>
Passing `token=True` is required when you want to use a private model.
</Tip>
Returns:
`Dict`: The configuration of the image processor.
Examples:
```python
# Download configuration from huggingface.co and cache.
image_processor_config = get_image_processor_config("bert-base-uncased")
# This model does not have a image processor config so the result will be an empty dict.
image_processor_config = get_image_processor_config("xlm-roberta-base")
# Save a pretrained image processor locally and you can reload its config
from transformers import AutoTokenizer
image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
image_processor.save_pretrained("image-processor-test")
image_processor_config = get_image_processor_config("image-processor-test")
```"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
)
if token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
token = use_auth_token
resolved_config_file = get_file_from_repo(
pretrained_model_name_or_path,
IMAGE_PROCESSOR_NAME,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
token=token,
revision=revision,
local_files_only=local_files_only,
)
if resolved_config_file is None:
logger.info(
"Could not locate the image processor configuration file, will try to use the model config instead."
)
return {}
with open(resolved_config_file, encoding="utf-8") as reader:
return json.load(reader)
class AutoImageProcessor:
r"""
This is a generic image processor class that will be instantiated as one of the image processor classes of the
library when created with the [`AutoImageProcessor.from_pretrained`] class method.
This class cannot be instantiated directly using `__init__()` (throws an error).
"""
def __init__(self):
raise EnvironmentError(
"AutoImageProcessor is designed to be instantiated "
"using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method."
)
@classmethod
@replace_list_option_in_docstrings(IMAGE_PROCESSOR_MAPPING_NAMES)
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
r"""
Instantiate one of the image processor classes of the library from a pretrained model vocabulary.
The image processor class to instantiate is selected based on the `model_type` property of the config object
(either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's
missing, by falling back to using pattern matching on `pretrained_model_name_or_path`:
List options
Params:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained image_processor hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or
namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`.
- a path to a *directory* containing a image processor file saved using the
[`~image_processing_utils.ImageProcessingMixin.save_pretrained`] method, e.g.,
`./my_model_directory/`.
- a path or url to a saved image processor JSON *file*, e.g.,
`./my_model_directory/preprocessor_config.json`.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model image processor should be cached if the
standard cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force to (re-)download the image processor files and override the cached versions if
they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to delete incompletely received file. Attempts to resume the download if such a file
exists.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
If `False`, then this function returns just the final image processor object. If `True`, then this
functions returns a `Tuple(image_processor, unused_kwargs)` where *unused_kwargs* is a dictionary
consisting of the key/value pairs whose keys are not image processor attributes: i.e., the part of
`kwargs` which has not been used to update `image_processor` and is otherwise ignored.
trust_remote_code (`bool`, *optional*, defaults to `False`):
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
should only be set to `True` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
kwargs (`Dict[str, Any]`, *optional*):
The values in kwargs of any keys which are image processor attributes will be used to override the
loaded values. Behavior concerning key/value pairs whose keys are *not* image processor attributes is
controlled by the `return_unused_kwargs` keyword parameter.
<Tip>
Passing `token=True` is required when you want to use a private model.
</Tip>
Examples:
```python
>>> from transformers import AutoImageProcessor
>>> # Download image processor from huggingface.co and cache.
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
>>> # If image processor files are in a directory (e.g. image processor was saved using *save_pretrained('./test/saved_model/')*)
>>> # image_processor = AutoImageProcessor.from_pretrained("./test/saved_model/")
```"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
)
if kwargs.get("token", None) is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
kwargs["token"] = use_auth_token
config = kwargs.pop("config", None)
trust_remote_code = kwargs.pop("trust_remote_code", None)
kwargs["_from_auto"] = True
config_dict, _ = ImageProcessingMixin.get_image_processor_dict(pretrained_model_name_or_path, **kwargs)
image_processor_class = config_dict.get("image_processor_type", None)
image_processor_auto_map = None
if "AutoImageProcessor" in config_dict.get("auto_map", {}):
image_processor_auto_map = config_dict["auto_map"]["AutoImageProcessor"]
# If we still don't have the image processor class, check if we're loading from a previous feature extractor config
# and if so, infer the image processor class from there.
if image_processor_class is None and image_processor_auto_map is None:
feature_extractor_class = config_dict.pop("feature_extractor_type", None)
if feature_extractor_class is not None:
logger.warning(
"Could not find image processor class in the image processor config or the model config. Loading"
" based on pattern matching with the model's feature extractor configuration."
)
image_processor_class = feature_extractor_class.replace("FeatureExtractor", "ImageProcessor")
if "AutoFeatureExtractor" in config_dict.get("auto_map", {}):
feature_extractor_auto_map = config_dict["auto_map"]["AutoFeatureExtractor"]
image_processor_auto_map = feature_extractor_auto_map.replace("FeatureExtractor", "ImageProcessor")
logger.warning(
"Could not find image processor auto map in the image processor config or the model config."
" Loading based on pattern matching with the model's feature extractor configuration."
)
# If we don't find the image processor class in the image processor config, let's try the model config.
if image_processor_class is None and image_processor_auto_map is None:
if not isinstance(config, PretrainedConfig):
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
# It could be in `config.image_processor_type``
image_processor_class = getattr(config, "image_processor_type", None)
if hasattr(config, "auto_map") and "AutoImageProcessor" in config.auto_map:
image_processor_auto_map = config.auto_map["AutoImageProcessor"]
if image_processor_class is not None:
image_processor_class = image_processor_class_from_name(image_processor_class)
has_remote_code = image_processor_auto_map is not None
has_local_code = image_processor_class is not None or type(config) in IMAGE_PROCESSOR_MAPPING
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
)
if has_remote_code and trust_remote_code:
image_processor_class = get_class_from_dynamic_module(
image_processor_auto_map, pretrained_model_name_or_path, **kwargs
)
_ = kwargs.pop("code_revision", None)
if os.path.isdir(pretrained_model_name_or_path):
image_processor_class.register_for_auto_class()
return image_processor_class.from_dict(config_dict, **kwargs)
elif image_processor_class is not None:
return image_processor_class.from_dict(config_dict, **kwargs)
# Last try: we use the IMAGE_PROCESSOR_MAPPING.
elif type(config) in IMAGE_PROCESSOR_MAPPING:
image_processor_class = IMAGE_PROCESSOR_MAPPING[type(config)]
return image_processor_class.from_dict(config_dict, **kwargs)
raise ValueError(
f"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a "
f"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following "
f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys())}"
)
@staticmethod
def register(config_class, image_processor_class, exist_ok=False):
"""
Register a new image processor for this class.
Args:
config_class ([`PretrainedConfig`]):
The configuration corresponding to the model to register.
image_processor_class ([`ImageProcessingMixin`]): The image processor to register.
"""
IMAGE_PROCESSOR_MAPPING.register(config_class, image_processor_class, exist_ok=exist_ok)
|