File size: 42,421 Bytes
06ba6ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
# coding=utf-8
# Copyright 2022 Facebook AI Research (FAIR) and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TensorFlow DeiT model."""


from __future__ import annotations

import collections.abc
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import tensorflow as tf

from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
    TFBaseModelOutput,
    TFBaseModelOutputWithPooling,
    TFImageClassifierOutput,
    TFMaskedImageModelingOutput,
)
from ...modeling_tf_utils import (
    TFPreTrainedModel,
    TFSequenceClassificationLoss,
    get_initializer,
    keras_serializable,
    unpack_inputs,
)
from ...tf_utils import shape_list, stable_softmax
from ...utils import (
    ModelOutput,
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from .configuration_deit import DeiTConfig


logger = logging.get_logger(__name__)

# General docstring
_CONFIG_FOR_DOC = "DeiTConfig"

# Base docstring
_CHECKPOINT_FOR_DOC = "facebook/deit-base-distilled-patch16-224"
_EXPECTED_OUTPUT_SHAPE = [1, 198, 768]

# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "facebook/deit-base-distilled-patch16-224"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"


TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "facebook/deit-base-distilled-patch16-224",
    # See all DeiT models at https://huggingface.co/models?filter=deit
]


@dataclass
class TFDeiTForImageClassificationWithTeacherOutput(ModelOutput):
    """
    Output type of [`DeiTForImageClassificationWithTeacher`].

    Args:
        logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
            Prediction scores as the average of the cls_logits and distillation logits.
        cls_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
            Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the
            class token).
        distillation_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
            Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the
            distillation token).
        hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
            `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus
            the initial embedding outputs.
        attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
            the self-attention heads.
    """

    logits: tf.Tensor = None
    cls_logits: tf.Tensor = None
    distillation_logits: tf.Tensor = None
    hidden_states: Tuple[tf.Tensor] | None = None
    attentions: Tuple[tf.Tensor] | None = None


class TFDeiTEmbeddings(tf.keras.layers.Layer):
    """
    Construct the CLS token, distillation token, position and patch embeddings. Optionally, also the mask token.
    """

    def __init__(self, config: DeiTConfig, use_mask_token: bool = False, **kwargs) -> None:
        super().__init__(**kwargs)
        self.config = config
        self.use_mask_token = use_mask_token
        self.patch_embeddings = TFDeiTPatchEmbeddings(config=config, name="patch_embeddings")
        self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob, name="dropout")

    def build(self, input_shape: tf.TensorShape):
        self.cls_token = self.add_weight(
            shape=(1, 1, self.config.hidden_size),
            initializer=tf.keras.initializers.zeros(),
            trainable=True,
            name="cls_token",
        )
        self.distillation_token = self.add_weight(
            shape=(1, 1, self.config.hidden_size),
            initializer=tf.keras.initializers.zeros(),
            trainable=True,
            name="distillation_token",
        )
        self.mask_token = None
        if self.use_mask_token:
            self.mask_token = self.add_weight(
                shape=(1, 1, self.config.hidden_size),
                initializer=tf.keras.initializers.zeros(),
                trainable=True,
                name="mask_token",
            )
        num_patches = self.patch_embeddings.num_patches
        self.position_embeddings = self.add_weight(
            shape=(1, num_patches + 2, self.config.hidden_size),
            initializer=tf.keras.initializers.zeros(),
            trainable=True,
            name="position_embeddings",
        )
        super().build(input_shape)

    def call(
        self, pixel_values: tf.Tensor, bool_masked_pos: tf.Tensor | None = None, training: bool = False
    ) -> tf.Tensor:
        embeddings = self.patch_embeddings(pixel_values)
        batch_size, seq_length, _ = shape_list(embeddings)

        if bool_masked_pos is not None:
            mask_tokens = tf.tile(self.mask_token, [batch_size, seq_length, 1])
            # replace the masked visual tokens by mask_tokens
            mask = tf.expand_dims(bool_masked_pos, axis=-1)
            mask = tf.cast(mask, dtype=mask_tokens.dtype)
            embeddings = embeddings * (1.0 - mask) + mask_tokens * mask

        cls_tokens = tf.repeat(self.cls_token, repeats=batch_size, axis=0)
        distillation_tokens = tf.repeat(self.distillation_token, repeats=batch_size, axis=0)
        embeddings = tf.concat((cls_tokens, distillation_tokens, embeddings), axis=1)
        embeddings = embeddings + self.position_embeddings
        embeddings = self.dropout(embeddings, training=training)
        return embeddings


class TFDeiTPatchEmbeddings(tf.keras.layers.Layer):
    """
    This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
    `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
    Transformer.
    """

    def __init__(self, config: DeiTConfig, **kwargs) -> None:
        super().__init__(**kwargs)
        image_size, patch_size = config.image_size, config.patch_size
        num_channels, hidden_size = config.num_channels, config.hidden_size

        image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
        patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.num_patches = num_patches

        self.projection = tf.keras.layers.Conv2D(
            hidden_size, kernel_size=patch_size, strides=patch_size, name="projection"
        )

    def call(self, pixel_values: tf.Tensor) -> tf.Tensor:
        batch_size, height, width, num_channels = shape_list(pixel_values)
        if tf.executing_eagerly() and num_channels != self.num_channels:
            raise ValueError(
                "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
            )
        if tf.executing_eagerly() and (height != self.image_size[0] or width != self.image_size[1]):
            raise ValueError(
                f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
            )
        x = self.projection(pixel_values)
        batch_size, height, width, num_channels = shape_list(x)
        x = tf.reshape(x, (batch_size, height * width, num_channels))
        return x


# Copied from transformers.models.vit.modeling_tf_vit.TFViTSelfAttention with ViT->DeiT
class TFDeiTSelfAttention(tf.keras.layers.Layer):
    def __init__(self, config: DeiTConfig, **kwargs):
        super().__init__(**kwargs)

        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number "
                f"of attention heads ({config.num_attention_heads})"
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size
        self.sqrt_att_head_size = math.sqrt(self.attention_head_size)

        self.query = tf.keras.layers.Dense(
            units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
        )
        self.key = tf.keras.layers.Dense(
            units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
        )
        self.value = tf.keras.layers.Dense(
            units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
        )
        self.dropout = tf.keras.layers.Dropout(rate=config.attention_probs_dropout_prob)

    def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
        # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
        tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))

        # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
        return tf.transpose(tensor, perm=[0, 2, 1, 3])

    def call(
        self,
        hidden_states: tf.Tensor,
        head_mask: tf.Tensor,
        output_attentions: bool,
        training: bool = False,
    ) -> Tuple[tf.Tensor]:
        batch_size = shape_list(hidden_states)[0]
        mixed_query_layer = self.query(inputs=hidden_states)
        mixed_key_layer = self.key(inputs=hidden_states)
        mixed_value_layer = self.value(inputs=hidden_states)
        query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
        key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
        value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        # (batch size, num_heads, seq_len_q, seq_len_k)
        attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
        dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
        attention_scores = tf.divide(attention_scores, dk)

        # Normalize the attention scores to probabilities.
        attention_probs = stable_softmax(logits=attention_scores, axis=-1)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(inputs=attention_probs, training=training)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = tf.multiply(attention_probs, head_mask)

        attention_output = tf.matmul(attention_probs, value_layer)
        attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])

        # (batch_size, seq_len_q, all_head_size)
        attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
        outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)

        return outputs


# Copied from transformers.models.vit.modeling_tf_vit.TFViTSelfOutput with ViT->DeiT
class TFDeiTSelfOutput(tf.keras.layers.Layer):
    """
    The residual connection is defined in TFDeiTLayer instead of here (as is the case with other models), due to the
    layernorm applied before each block.
    """

    def __init__(self, config: DeiTConfig, **kwargs):
        super().__init__(**kwargs)

        self.dense = tf.keras.layers.Dense(
            units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
        )
        self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)

    def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
        hidden_states = self.dense(inputs=hidden_states)
        hidden_states = self.dropout(inputs=hidden_states, training=training)

        return hidden_states


# Copied from transformers.models.vit.modeling_tf_vit.TFViTAttention with ViT->DeiT
class TFDeiTAttention(tf.keras.layers.Layer):
    def __init__(self, config: DeiTConfig, **kwargs):
        super().__init__(**kwargs)

        self.self_attention = TFDeiTSelfAttention(config, name="attention")
        self.dense_output = TFDeiTSelfOutput(config, name="output")

    def prune_heads(self, heads):
        raise NotImplementedError

    def call(
        self,
        input_tensor: tf.Tensor,
        head_mask: tf.Tensor,
        output_attentions: bool,
        training: bool = False,
    ) -> Tuple[tf.Tensor]:
        self_outputs = self.self_attention(
            hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, training=training
        )
        attention_output = self.dense_output(
            hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
        )
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them

        return outputs


# Copied from transformers.models.vit.modeling_tf_vit.TFViTIntermediate with ViT->DeiT
class TFDeiTIntermediate(tf.keras.layers.Layer):
    def __init__(self, config: DeiTConfig, **kwargs):
        super().__init__(**kwargs)

        self.dense = tf.keras.layers.Dense(
            units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
        )

        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = get_tf_activation(config.hidden_act)
        else:
            self.intermediate_act_fn = config.hidden_act

    def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
        hidden_states = self.dense(inputs=hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)

        return hidden_states


# Copied from transformers.models.vit.modeling_tf_vit.TFViTOutput with ViT->DeiT
class TFDeiTOutput(tf.keras.layers.Layer):
    def __init__(self, config: DeiTConfig, **kwargs):
        super().__init__(**kwargs)

        self.dense = tf.keras.layers.Dense(
            units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
        )
        self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)

    def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
        hidden_states = self.dense(inputs=hidden_states)
        hidden_states = self.dropout(inputs=hidden_states, training=training)
        hidden_states = hidden_states + input_tensor

        return hidden_states


class TFDeiTLayer(tf.keras.layers.Layer):
    """This corresponds to the Block class in the timm implementation."""

    def __init__(self, config: DeiTConfig, **kwargs):
        super().__init__(**kwargs)

        self.attention = TFDeiTAttention(config, name="attention")
        self.intermediate = TFDeiTIntermediate(config, name="intermediate")
        self.deit_output = TFDeiTOutput(config, name="output")

        self.layernorm_before = tf.keras.layers.LayerNormalization(
            epsilon=config.layer_norm_eps, name="layernorm_before"
        )
        self.layernorm_after = tf.keras.layers.LayerNormalization(
            epsilon=config.layer_norm_eps, name="layernorm_after"
        )

    def call(
        self,
        hidden_states: tf.Tensor,
        head_mask: tf.Tensor,
        output_attentions: bool,
        training: bool = False,
    ) -> Tuple[tf.Tensor]:
        attention_outputs = self.attention(
            # in DeiT, layernorm is applied before self-attention
            input_tensor=self.layernorm_before(inputs=hidden_states, training=training),
            head_mask=head_mask,
            output_attentions=output_attentions,
            training=training,
        )
        attention_output = attention_outputs[0]

        # first residual connection
        hidden_states = attention_output + hidden_states

        # in DeiT, layernorm is also applied after self-attention
        layer_output = self.layernorm_after(inputs=hidden_states, training=training)

        intermediate_output = self.intermediate(hidden_states=layer_output, training=training)

        # second residual connection is done here
        layer_output = self.deit_output(
            hidden_states=intermediate_output, input_tensor=hidden_states, training=training
        )
        outputs = (layer_output,) + attention_outputs[1:]  # add attentions if we output them

        return outputs


# Copied from transformers.models.vit.modeling_tf_vit.TFViTEncoder with ViT->DeiT
class TFDeiTEncoder(tf.keras.layers.Layer):
    def __init__(self, config: DeiTConfig, **kwargs):
        super().__init__(**kwargs)

        self.layer = [TFDeiTLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]

    def call(
        self,
        hidden_states: tf.Tensor,
        head_mask: tf.Tensor,
        output_attentions: bool,
        output_hidden_states: bool,
        return_dict: bool,
        training: bool = False,
    ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_outputs = layer_module(
                hidden_states=hidden_states,
                head_mask=head_mask[i],
                output_attentions=output_attentions,
                training=training,
            )
            hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        # Add last layer
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)

        return TFBaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
        )


@keras_serializable
class TFDeiTMainLayer(tf.keras.layers.Layer):
    config_class = DeiTConfig

    def __init__(
        self, config: DeiTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False, **kwargs
    ) -> None:
        super().__init__(**kwargs)
        self.config = config

        self.embeddings = TFDeiTEmbeddings(config, use_mask_token=use_mask_token, name="embeddings")
        self.encoder = TFDeiTEncoder(config, name="encoder")

        self.layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
        self.pooler = TFDeiTPooler(config, name="pooler") if add_pooling_layer else None

    def get_input_embeddings(self) -> TFDeiTPatchEmbeddings:
        return self.embeddings.patch_embeddings

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        raise NotImplementedError

    def get_head_mask(self, head_mask):
        if head_mask is not None:
            raise NotImplementedError
        else:
            head_mask = [None] * self.config.num_hidden_layers

        return head_mask

    @unpack_inputs
    def call(
        self,
        pixel_values: tf.Tensor | None = None,
        bool_masked_pos: tf.Tensor | None = None,
        head_mask: tf.Tensor | None = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: bool = False,
    ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor, ...]]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        # TF 2.0 image layers can't use NCHW format when running on CPU.
        # (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels)
        pixel_values = tf.transpose(pixel_values, (0, 2, 3, 1))

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask)

        embedding_output = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos, training=training)

        encoder_outputs = self.encoder(
            embedding_output,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )
        sequence_output = encoder_outputs[0]
        sequence_output = self.layernorm(sequence_output, training=training)
        pooled_output = self.pooler(sequence_output, training=training) if self.pooler is not None else None

        if not return_dict:
            head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
            return head_outputs + encoder_outputs[1:]

        return TFBaseModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


# Copied from transformers.models.vit.modeling_tf_vit.TFViTPreTrainedModel with ViT->DeiT all-casing
class TFDeiTPreTrainedModel(TFPreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = DeiTConfig
    base_model_prefix = "deit"
    main_input_name = "pixel_values"


DEIT_START_DOCSTRING = r"""
    This model is a TensorFlow
    [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer). Use it as a regular
    TensorFlow Module and refer to the TensorFlow documentation for all matter related to general usage and behavior.

    Parameters:
        config ([`DeiTConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

DEIT_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
            [`DeiTImageProcessor.__call__`] for details.

        head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare DeiT Model transformer outputting raw hidden-states without any specific head on top.",
    DEIT_START_DOCSTRING,
)
class TFDeiTModel(TFDeiTPreTrainedModel):
    def __init__(
        self, config: DeiTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False, **kwargs
    ) -> None:
        super().__init__(config, **kwargs)

        self.deit = TFDeiTMainLayer(
            config, add_pooling_layer=add_pooling_layer, use_mask_token=use_mask_token, name="deit"
        )

    @unpack_inputs
    @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=TFBaseModelOutputWithPooling,
        config_class=_CONFIG_FOR_DOC,
        modality="vision",
        expected_output=_EXPECTED_OUTPUT_SHAPE,
    )
    def call(
        self,
        pixel_values: tf.Tensor | None = None,
        bool_masked_pos: tf.Tensor | None = None,
        head_mask: tf.Tensor | None = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: bool = False,
    ) -> Union[Tuple, TFBaseModelOutputWithPooling]:
        outputs = self.deit(
            pixel_values=pixel_values,
            bool_masked_pos=bool_masked_pos,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )
        return outputs


# Copied from transformers.models.vit.modeling_tf_vit.TFViTPooler with ViT->DeiT
class TFDeiTPooler(tf.keras.layers.Layer):
    def __init__(self, config: DeiTConfig, **kwargs):
        super().__init__(**kwargs)

        self.dense = tf.keras.layers.Dense(
            units=config.hidden_size,
            kernel_initializer=get_initializer(config.initializer_range),
            activation="tanh",
            name="dense",
        )

    def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(inputs=first_token_tensor)

        return pooled_output


class TFDeitPixelShuffle(tf.keras.layers.Layer):
    """TF layer implementation of torch.nn.PixelShuffle"""

    def __init__(self, upscale_factor: int, **kwargs) -> None:
        super().__init__(**kwargs)
        if not isinstance(upscale_factor, int) or upscale_factor < 2:
            raise ValueError(f"upscale_factor must be an integer value >= 2 got {upscale_factor}")
        self.upscale_factor = upscale_factor

    def call(self, x: tf.Tensor) -> tf.Tensor:
        hidden_states = x
        batch_size, _, _, num_input_channels = shape_list(hidden_states)
        block_size_squared = self.upscale_factor**2
        output_depth = int(num_input_channels / block_size_squared)
        # When the number of output channels >= 2, PyTorch's PixelShuffle and
        # TF's depth_to_space differ in their output as the order of channels selected for combining
        # is a permutation of the other c.f.
        # https://stackoverflow.com/questions/68272502/tf-depth-to-space-not-same-as-torchs-pixelshuffle-when-output-channels-1
        permutation = tf.constant(
            [[i + j * block_size_squared for i in range(block_size_squared) for j in range(output_depth)]]
        )
        hidden_states = tf.gather(params=hidden_states, indices=tf.tile(permutation, [batch_size, 1]), batch_dims=-1)
        hidden_states = tf.nn.depth_to_space(hidden_states, block_size=self.upscale_factor, data_format="NHWC")
        return hidden_states


class TFDeitDecoder(tf.keras.layers.Layer):
    def __init__(self, config: DeiTConfig, **kwargs) -> None:
        super().__init__(**kwargs)
        self.conv2d = tf.keras.layers.Conv2D(
            filters=config.encoder_stride**2 * config.num_channels, kernel_size=1, name="0"
        )
        self.pixel_shuffle = TFDeitPixelShuffle(config.encoder_stride, name="1")

    def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor:
        hidden_states = inputs
        hidden_states = self.conv2d(hidden_states)
        hidden_states = self.pixel_shuffle(hidden_states)
        return hidden_states


@add_start_docstrings(
    "DeiT Model with a decoder on top for masked image modeling, as proposed in"
    " [SimMIM](https://arxiv.org/abs/2111.09886).",
    DEIT_START_DOCSTRING,
)
class TFDeiTForMaskedImageModeling(TFDeiTPreTrainedModel):
    def __init__(self, config: DeiTConfig) -> None:
        super().__init__(config)

        self.deit = TFDeiTMainLayer(config, add_pooling_layer=False, use_mask_token=True, name="deit")
        self.decoder = TFDeitDecoder(config, name="decoder")

    @unpack_inputs
    @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=TFMaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC)
    def call(
        self,
        pixel_values: tf.Tensor | None = None,
        bool_masked_pos: tf.Tensor | None = None,
        head_mask: tf.Tensor | None = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: bool = False,
    ) -> Union[tuple, TFMaskedImageModelingOutput]:
        r"""
        bool_masked_pos (`tf.Tensor` of type bool and shape `(batch_size, num_patches)`):
            Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).

        Returns:

        Examples:
        ```python
        >>> from transformers import AutoImageProcessor, TFDeiTForMaskedImageModeling
        >>> import tensorflow as tf
        >>> from PIL import Image
        >>> import requests

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224")
        >>> model = TFDeiTForMaskedImageModeling.from_pretrained("facebook/deit-base-distilled-patch16-224")

        >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
        >>> pixel_values = image_processor(images=image, return_tensors="tf").pixel_values
        >>> # create random boolean mask of shape (batch_size, num_patches)
        >>> bool_masked_pos = tf.cast(tf.random.uniform((1, num_patches), minval=0, maxval=2, dtype=tf.int32), tf.bool)

        >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
        >>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction
        >>> list(reconstructed_pixel_values.shape)
        [1, 3, 224, 224]
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.deit(
            pixel_values,
            bool_masked_pos=bool_masked_pos,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        sequence_output = outputs[0]

        # Reshape to (batch_size, num_channels, height, width)
        sequence_output = sequence_output[:, 1:-1]
        batch_size, sequence_length, num_channels = shape_list(sequence_output)
        height = width = int(sequence_length**0.5)
        sequence_output = tf.reshape(sequence_output, (batch_size, height, width, num_channels))

        # Reconstruct pixel values
        reconstructed_pixel_values = self.decoder(sequence_output, training=training)
        # TF 2.0 image layers can't use NCHW format when running on CPU, so intermediate layers use NHWC,
        # including the The decoder. We transpose to compute the loss against the pixel values
        # (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width)
        reconstructed_pixel_values = tf.transpose(reconstructed_pixel_values, (0, 3, 1, 2))

        masked_im_loss = None
        if bool_masked_pos is not None:
            size = self.config.image_size // self.config.patch_size
            bool_masked_pos = tf.reshape(bool_masked_pos, (-1, size, size))
            mask = tf.repeat(bool_masked_pos, self.config.patch_size, 1)
            mask = tf.repeat(mask, self.config.patch_size, 2)
            mask = tf.expand_dims(mask, 1)
            mask = tf.cast(mask, tf.float32)

            reconstruction_loss = tf.keras.losses.mean_absolute_error(
                # Swap axes as metric calculation reduces over the final dimension
                tf.transpose(pixel_values, (1, 2, 3, 0)),
                tf.transpose(reconstructed_pixel_values, (1, 2, 3, 0)),
            )
            reconstruction_loss = tf.expand_dims(reconstruction_loss, 0)
            total_loss = tf.reduce_sum(reconstruction_loss * mask)
            num_masked_pixels = (tf.reduce_sum(mask) + 1e-5) * self.config.num_channels
            masked_im_loss = total_loss / num_masked_pixels
            masked_im_loss = tf.reshape(masked_im_loss, (1,))

        if not return_dict:
            output = (reconstructed_pixel_values,) + outputs[1:]
            return ((masked_im_loss,) + output) if masked_im_loss is not None else output

        return TFMaskedImageModelingOutput(
            loss=masked_im_loss,
            reconstruction=reconstructed_pixel_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
    DeiT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
    the [CLS] token) e.g. for ImageNet.
    """,
    DEIT_START_DOCSTRING,
)
class TFDeiTForImageClassification(TFDeiTPreTrainedModel, TFSequenceClassificationLoss):
    def __init__(self, config: DeiTConfig):
        super().__init__(config)

        self.num_labels = config.num_labels
        self.deit = TFDeiTMainLayer(config, add_pooling_layer=False, name="deit")

        # Classifier head
        self.classifier = (
            tf.keras.layers.Dense(config.num_labels, name="classifier")
            if config.num_labels > 0
            else tf.keras.layers.Activation("linear", name="classifier")
        )

    @unpack_inputs
    @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=TFImageClassifierOutput, config_class=_CONFIG_FOR_DOC)
    def call(
        self,
        pixel_values: tf.Tensor | None = None,
        head_mask: tf.Tensor | None = None,
        labels: tf.Tensor | None = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: bool = False,
    ) -> Union[tf.Tensor, TFImageClassifierOutput]:
        r"""
        labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        Returns:

        Examples:

        ```python
        >>> from transformers import AutoImageProcessor, TFDeiTForImageClassification
        >>> import tensorflow as tf
        >>> from PIL import Image
        >>> import requests

        >>> tf.keras.utils.set_random_seed(3)  # doctest: +IGNORE_RESULT
        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> # note: we are loading a TFDeiTForImageClassificationWithTeacher from the hub here,
        >>> # so the head will be randomly initialized, hence the predictions will be random
        >>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224")
        >>> model = TFDeiTForImageClassification.from_pretrained("facebook/deit-base-distilled-patch16-224")

        >>> inputs = image_processor(images=image, return_tensors="tf")
        >>> outputs = model(**inputs)
        >>> logits = outputs.logits
        >>> # model predicts one of the 1000 ImageNet classes
        >>> predicted_class_idx = tf.math.argmax(logits, axis=-1)[0]
        >>> print("Predicted class:", model.config.id2label[int(predicted_class_idx)])
        Predicted class: little blue heron, Egretta caerulea
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.deit(
            pixel_values,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        sequence_output = outputs[0]

        logits = self.classifier(sequence_output[:, 0, :])
        # we don't use the distillation token

        loss = None if labels is None else self.hf_compute_loss(labels, logits)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return TFImageClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
    DeiT Model transformer with image classification heads on top (a linear layer on top of the final hidden state of
    the [CLS] token and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet.

    .. warning::

            This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet
            supported.
    """,
    DEIT_START_DOCSTRING,
)
class TFDeiTForImageClassificationWithTeacher(TFDeiTPreTrainedModel):
    def __init__(self, config: DeiTConfig) -> None:
        super().__init__(config)

        self.num_labels = config.num_labels
        self.deit = TFDeiTMainLayer(config, add_pooling_layer=False, name="deit")

        # Classifier heads
        self.cls_classifier = (
            tf.keras.layers.Dense(config.num_labels, name="cls_classifier")
            if config.num_labels > 0
            else tf.keras.layers.Activation("linear", name="cls_classifier")
        )
        self.distillation_classifier = (
            tf.keras.layers.Dense(config.num_labels, name="distillation_classifier")
            if config.num_labels > 0
            else tf.keras.layers.Activation("linear", name="distillation_classifier")
        )

    @unpack_inputs
    @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_IMAGE_CLASS_CHECKPOINT,
        output_type=TFDeiTForImageClassificationWithTeacherOutput,
        config_class=_CONFIG_FOR_DOC,
        expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
    )
    def call(
        self,
        pixel_values: tf.Tensor | None = None,
        head_mask: tf.Tensor | None = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: bool = False,
    ) -> Union[tuple, TFDeiTForImageClassificationWithTeacherOutput]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.deit(
            pixel_values,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        sequence_output = outputs[0]

        cls_logits = self.cls_classifier(sequence_output[:, 0, :])
        distillation_logits = self.distillation_classifier(sequence_output[:, 1, :])

        # during inference, return the average of both classifier predictions
        logits = (cls_logits + distillation_logits) / 2

        if not return_dict:
            output = (logits, cls_logits, distillation_logits) + outputs[1:]
            return output

        return TFDeiTForImageClassificationWithTeacherOutput(
            logits=logits,
            cls_logits=cls_logits,
            distillation_logits=distillation_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )