File size: 7,311 Bytes
06ba6ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# coding=utf-8
# Copyright The HuggingFace team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ConvBERT model configuration"""

from collections import OrderedDict
from typing import Mapping

from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging


logger = logging.get_logger(__name__)

CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json",
    "YituTech/conv-bert-medium-small": (
        "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"
    ),
    "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json",
    # See all ConvBERT models at https://huggingface.co/models?filter=convbert
}


class ConvBertConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`ConvBertModel`]. It is used to instantiate an
    ConvBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the ConvBERT
    [YituTech/conv-bert-base](https://huggingface.co/YituTech/conv-bert-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the ConvBERT model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`ConvBertModel`] or [`TFConvBertModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`ConvBertModel`] or [`TFConvBertModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        head_ratio (`int`, *optional*, defaults to 2):
            Ratio gamma to reduce the number of attention heads.
        num_groups (`int`, *optional*, defaults to 1):
            The number of groups for grouped linear layers for ConvBert model
        conv_kernel_size (`int`, *optional*, defaults to 9):
            The size of the convolutional kernel.
        classifier_dropout (`float`, *optional*):
            The dropout ratio for the classification head.

    Example:

    ```python
    >>> from transformers import ConvBertConfig, ConvBertModel

    >>> # Initializing a ConvBERT convbert-base-uncased style configuration
    >>> configuration = ConvBertConfig()

    >>> # Initializing a model (with random weights) from the convbert-base-uncased style configuration
    >>> model = ConvBertModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "convbert"

    def __init__(
        self,
        vocab_size=30522,
        hidden_size=768,
        num_hidden_layers=12,
        num_attention_heads=12,
        intermediate_size=3072,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=2,
        initializer_range=0.02,
        layer_norm_eps=1e-12,
        pad_token_id=1,
        bos_token_id=0,
        eos_token_id=2,
        embedding_size=768,
        head_ratio=2,
        conv_kernel_size=9,
        num_groups=1,
        classifier_dropout=None,
        **kwargs,
    ):
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            **kwargs,
        )

        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.embedding_size = embedding_size
        self.head_ratio = head_ratio
        self.conv_kernel_size = conv_kernel_size
        self.num_groups = num_groups
        self.classifier_dropout = classifier_dropout


# Copied from transformers.models.bert.configuration_bert.BertOnnxConfig
class ConvBertOnnxConfig(OnnxConfig):
    @property
    def inputs(self) -> Mapping[str, Mapping[int, str]]:
        if self.task == "multiple-choice":
            dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
        else:
            dynamic_axis = {0: "batch", 1: "sequence"}
        return OrderedDict(
            [
                ("input_ids", dynamic_axis),
                ("attention_mask", dynamic_axis),
                ("token_type_ids", dynamic_axis),
            ]
        )