# Copyright (c) OpenMMLab. All rights reserved. import copy as cp from collections import OrderedDict import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import (ConvModule, MaxPool2d, constant_init, kaiming_init, normal_init) from mmcv.runner.checkpoint import load_state_dict from mmpose.utils import get_root_logger from ..builder import BACKBONES from .base_backbone import BaseBackbone from .resnet import Bottleneck as _Bottleneck from .utils.utils import get_state_dict class Bottleneck(_Bottleneck): expansion = 4 """Bottleneck block for MSPN. Args: in_channels (int): Input channels of this block. out_channels (int): Output channels of this block. stride (int): stride of the block. Default: 1 downsample (nn.Module): downsample operation on identity branch. Default: None norm_cfg (dict): dictionary to construct and config norm layer. Default: dict(type='BN') """ def __init__(self, in_channels, out_channels, **kwargs): super().__init__(in_channels, out_channels * 4, **kwargs) class DownsampleModule(nn.Module): """Downsample module for MSPN. Args: block (nn.Module): Downsample block. num_blocks (list): Number of blocks in each downsample unit. num_units (int): Numbers of downsample units. Default: 4 has_skip (bool): Have skip connections from prior upsample module or not. Default:False norm_cfg (dict): dictionary to construct and config norm layer. Default: dict(type='BN') in_channels (int): Number of channels of the input feature to downsample module. Default: 64 """ def __init__(self, block, num_blocks, num_units=4, has_skip=False, norm_cfg=dict(type='BN'), in_channels=64): # Protect mutable default arguments norm_cfg = cp.deepcopy(norm_cfg) super().__init__() self.has_skip = has_skip self.in_channels = in_channels assert len(num_blocks) == num_units self.num_blocks = num_blocks self.num_units = num_units self.norm_cfg = norm_cfg self.layer1 = self._make_layer(block, in_channels, num_blocks[0]) for i in range(1, num_units): module_name = f'layer{i + 1}' self.add_module( module_name, self._make_layer( block, in_channels * pow(2, i), num_blocks[i], stride=2)) def _make_layer(self, block, out_channels, blocks, stride=1): downsample = None if stride != 1 or self.in_channels != out_channels * block.expansion: downsample = ConvModule( self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, padding=0, norm_cfg=self.norm_cfg, act_cfg=None, inplace=True) units = list() units.append( block( self.in_channels, out_channels, stride=stride, downsample=downsample, norm_cfg=self.norm_cfg)) self.in_channels = out_channels * block.expansion for _ in range(1, blocks): units.append(block(self.in_channels, out_channels)) return nn.Sequential(*units) def forward(self, x, skip1, skip2): out = list() for i in range(self.num_units): module_name = f'layer{i + 1}' module_i = getattr(self, module_name) x = module_i(x) if self.has_skip: x = x + skip1[i] + skip2[i] out.append(x) out.reverse() return tuple(out) class UpsampleUnit(nn.Module): """Upsample unit for upsample module. Args: ind (int): Indicates whether to interpolate (>0) and whether to generate feature map for the next hourglass-like module. num_units (int): Number of units that form a upsample module. Along with ind and gen_cross_conv, nm_units is used to decide whether to generate feature map for the next hourglass-like module. in_channels (int): Channel number of the skip-in feature maps from the corresponding downsample unit. unit_channels (int): Channel number in this unit. Default:256. gen_skip: (bool): Whether or not to generate skips for the posterior downsample module. Default:False gen_cross_conv (bool): Whether to generate feature map for the next hourglass-like module. Default:False norm_cfg (dict): dictionary to construct and config norm layer. Default: dict(type='BN') out_channels (int): Number of channels of feature output by upsample module. Must equal to in_channels of downsample module. Default:64 """ def __init__(self, ind, num_units, in_channels, unit_channels=256, gen_skip=False, gen_cross_conv=False, norm_cfg=dict(type='BN'), out_channels=64): # Protect mutable default arguments norm_cfg = cp.deepcopy(norm_cfg) super().__init__() self.num_units = num_units self.norm_cfg = norm_cfg self.in_skip = ConvModule( in_channels, unit_channels, kernel_size=1, stride=1, padding=0, norm_cfg=self.norm_cfg, act_cfg=None, inplace=True) self.relu = nn.ReLU(inplace=True) self.ind = ind if self.ind > 0: self.up_conv = ConvModule( unit_channels, unit_channels, kernel_size=1, stride=1, padding=0, norm_cfg=self.norm_cfg, act_cfg=None, inplace=True) self.gen_skip = gen_skip if self.gen_skip: self.out_skip1 = ConvModule( in_channels, in_channels, kernel_size=1, stride=1, padding=0, norm_cfg=self.norm_cfg, inplace=True) self.out_skip2 = ConvModule( unit_channels, in_channels, kernel_size=1, stride=1, padding=0, norm_cfg=self.norm_cfg, inplace=True) self.gen_cross_conv = gen_cross_conv if self.ind == num_units - 1 and self.gen_cross_conv: self.cross_conv = ConvModule( unit_channels, out_channels, kernel_size=1, stride=1, padding=0, norm_cfg=self.norm_cfg, inplace=True) def forward(self, x, up_x): out = self.in_skip(x) if self.ind > 0: up_x = F.interpolate( up_x, size=(x.size(2), x.size(3)), mode='bilinear', align_corners=True) up_x = self.up_conv(up_x) out = out + up_x out = self.relu(out) skip1 = None skip2 = None if self.gen_skip: skip1 = self.out_skip1(x) skip2 = self.out_skip2(out) cross_conv = None if self.ind == self.num_units - 1 and self.gen_cross_conv: cross_conv = self.cross_conv(out) return out, skip1, skip2, cross_conv class UpsampleModule(nn.Module): """Upsample module for MSPN. Args: unit_channels (int): Channel number in the upsample units. Default:256. num_units (int): Numbers of upsample units. Default: 4 gen_skip (bool): Whether to generate skip for posterior downsample module or not. Default:False gen_cross_conv (bool): Whether to generate feature map for the next hourglass-like module. Default:False norm_cfg (dict): dictionary to construct and config norm layer. Default: dict(type='BN') out_channels (int): Number of channels of feature output by upsample module. Must equal to in_channels of downsample module. Default:64 """ def __init__(self, unit_channels=256, num_units=4, gen_skip=False, gen_cross_conv=False, norm_cfg=dict(type='BN'), out_channels=64): # Protect mutable default arguments norm_cfg = cp.deepcopy(norm_cfg) super().__init__() self.in_channels = list() for i in range(num_units): self.in_channels.append(Bottleneck.expansion * out_channels * pow(2, i)) self.in_channels.reverse() self.num_units = num_units self.gen_skip = gen_skip self.gen_cross_conv = gen_cross_conv self.norm_cfg = norm_cfg for i in range(num_units): module_name = f'up{i + 1}' self.add_module( module_name, UpsampleUnit( i, self.num_units, self.in_channels[i], unit_channels, self.gen_skip, self.gen_cross_conv, norm_cfg=self.norm_cfg, out_channels=64)) def forward(self, x): out = list() skip1 = list() skip2 = list() cross_conv = None for i in range(self.num_units): module_i = getattr(self, f'up{i + 1}') if i == 0: outi, skip1_i, skip2_i, _ = module_i(x[i], None) elif i == self.num_units - 1: outi, skip1_i, skip2_i, cross_conv = module_i(x[i], out[i - 1]) else: outi, skip1_i, skip2_i, _ = module_i(x[i], out[i - 1]) out.append(outi) skip1.append(skip1_i) skip2.append(skip2_i) skip1.reverse() skip2.reverse() return out, skip1, skip2, cross_conv class SingleStageNetwork(nn.Module): """Single_stage Network. Args: unit_channels (int): Channel number in the upsample units. Default:256. num_units (int): Numbers of downsample/upsample units. Default: 4 gen_skip (bool): Whether to generate skip for posterior downsample module or not. Default:False gen_cross_conv (bool): Whether to generate feature map for the next hourglass-like module. Default:False has_skip (bool): Have skip connections from prior upsample module or not. Default:False num_blocks (list): Number of blocks in each downsample unit. Default: [2, 2, 2, 2] Note: Make sure num_units==len(num_blocks) norm_cfg (dict): dictionary to construct and config norm layer. Default: dict(type='BN') in_channels (int): Number of channels of the feature from ResNetTop. Default: 64. """ def __init__(self, has_skip=False, gen_skip=False, gen_cross_conv=False, unit_channels=256, num_units=4, num_blocks=[2, 2, 2, 2], norm_cfg=dict(type='BN'), in_channels=64): # Protect mutable default arguments norm_cfg = cp.deepcopy(norm_cfg) num_blocks = cp.deepcopy(num_blocks) super().__init__() assert len(num_blocks) == num_units self.has_skip = has_skip self.gen_skip = gen_skip self.gen_cross_conv = gen_cross_conv self.num_units = num_units self.unit_channels = unit_channels self.num_blocks = num_blocks self.norm_cfg = norm_cfg self.downsample = DownsampleModule(Bottleneck, num_blocks, num_units, has_skip, norm_cfg, in_channels) self.upsample = UpsampleModule(unit_channels, num_units, gen_skip, gen_cross_conv, norm_cfg, in_channels) def forward(self, x, skip1, skip2): mid = self.downsample(x, skip1, skip2) out, skip1, skip2, cross_conv = self.upsample(mid) return out, skip1, skip2, cross_conv class ResNetTop(nn.Module): """ResNet top for MSPN. Args: norm_cfg (dict): dictionary to construct and config norm layer. Default: dict(type='BN') channels (int): Number of channels of the feature output by ResNetTop. """ def __init__(self, norm_cfg=dict(type='BN'), channels=64): # Protect mutable default arguments norm_cfg = cp.deepcopy(norm_cfg) super().__init__() self.top = nn.Sequential( ConvModule( 3, channels, kernel_size=7, stride=2, padding=3, norm_cfg=norm_cfg, inplace=True), MaxPool2d(kernel_size=3, stride=2, padding=1)) def forward(self, img): return self.top(img) @BACKBONES.register_module() class MSPN(BaseBackbone): """MSPN backbone. Paper ref: Li et al. "Rethinking on Multi-Stage Networks for Human Pose Estimation" (CVPR 2020). Args: unit_channels (int): Number of Channels in an upsample unit. Default: 256 num_stages (int): Number of stages in a multi-stage MSPN. Default: 4 num_units (int): Number of downsample/upsample units in a single-stage network. Default: 4 Note: Make sure num_units == len(self.num_blocks) num_blocks (list): Number of bottlenecks in each downsample unit. Default: [2, 2, 2, 2] norm_cfg (dict): dictionary to construct and config norm layer. Default: dict(type='BN') res_top_channels (int): Number of channels of feature from ResNetTop. Default: 64. Example: >>> from mmpose.models import MSPN >>> import torch >>> self = MSPN(num_stages=2,num_units=2,num_blocks=[2,2]) >>> self.eval() >>> inputs = torch.rand(1, 3, 511, 511) >>> level_outputs = self.forward(inputs) >>> for level_output in level_outputs: ... for feature in level_output: ... print(tuple(feature.shape)) ... (1, 256, 64, 64) (1, 256, 128, 128) (1, 256, 64, 64) (1, 256, 128, 128) """ def __init__(self, unit_channels=256, num_stages=4, num_units=4, num_blocks=[2, 2, 2, 2], norm_cfg=dict(type='BN'), res_top_channels=64): # Protect mutable default arguments norm_cfg = cp.deepcopy(norm_cfg) num_blocks = cp.deepcopy(num_blocks) super().__init__() self.unit_channels = unit_channels self.num_stages = num_stages self.num_units = num_units self.num_blocks = num_blocks self.norm_cfg = norm_cfg assert self.num_stages > 0 assert self.num_units > 1 assert self.num_units == len(self.num_blocks) self.top = ResNetTop(norm_cfg=norm_cfg) self.multi_stage_mspn = nn.ModuleList([]) for i in range(self.num_stages): if i == 0: has_skip = False else: has_skip = True if i != self.num_stages - 1: gen_skip = True gen_cross_conv = True else: gen_skip = False gen_cross_conv = False self.multi_stage_mspn.append( SingleStageNetwork(has_skip, gen_skip, gen_cross_conv, unit_channels, num_units, num_blocks, norm_cfg, res_top_channels)) def forward(self, x): """Model forward function.""" out_feats = [] skip1 = None skip2 = None x = self.top(x) for i in range(self.num_stages): out, skip1, skip2, x = self.multi_stage_mspn[i](x, skip1, skip2) out_feats.append(out) return out_feats def init_weights(self, pretrained=None): """Initialize model weights.""" if isinstance(pretrained, str): logger = get_root_logger() state_dict_tmp = get_state_dict(pretrained) state_dict = OrderedDict() state_dict['top'] = OrderedDict() state_dict['bottlenecks'] = OrderedDict() for k, v in state_dict_tmp.items(): if k.startswith('layer'): if 'downsample.0' in k: state_dict['bottlenecks'][k.replace( 'downsample.0', 'downsample.conv')] = v elif 'downsample.1' in k: state_dict['bottlenecks'][k.replace( 'downsample.1', 'downsample.bn')] = v else: state_dict['bottlenecks'][k] = v elif k.startswith('conv1'): state_dict['top'][k.replace('conv1', 'top.0.conv')] = v elif k.startswith('bn1'): state_dict['top'][k.replace('bn1', 'top.0.bn')] = v load_state_dict( self.top, state_dict['top'], strict=False, logger=logger) for i in range(self.num_stages): load_state_dict( self.multi_stage_mspn[i].downsample, state_dict['bottlenecks'], strict=False, logger=logger) else: for m in self.multi_stage_mspn.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, nn.BatchNorm2d): constant_init(m, 1) elif isinstance(m, nn.Linear): normal_init(m, std=0.01) for m in self.top.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m)