vierundvi
/
grounded-sam-osx
/transformer_utils
/mmpose
/models
/backbones
/modules
/bottleneck_block.py
# -------------------------------------------------------- | |
# High Resolution Transformer | |
# Copyright (c) 2021 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# Written by Rao Fu, RainbowSecret | |
# -------------------------------------------------------- | |
import os | |
import copy | |
import logging | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as cp | |
from mmcv.cnn import build_conv_layer, build_norm_layer | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__( | |
self, | |
inplanes, | |
planes, | |
stride=1, | |
downsample=None, | |
with_cp=None, | |
norm_cfg=dict(type="BN"), | |
conv_cfg=None, | |
): | |
super(Bottleneck, self).__init__() | |
norm_cfg = copy.deepcopy(norm_cfg) | |
self.in_channels = inplanes | |
self.out_channels = planes | |
self.stride = stride | |
self.with_cp = with_cp | |
self.downsample = downsample | |
self.conv1_stride = 1 | |
self.conv2_stride = stride | |
self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1) | |
self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2) | |
self.norm3_name, norm3 = build_norm_layer( | |
norm_cfg, planes * self.expansion, postfix=3 | |
) | |
self.conv1 = build_conv_layer( | |
conv_cfg, | |
inplanes, | |
planes, | |
kernel_size=1, | |
stride=self.conv1_stride, | |
bias=False, | |
) | |
self.add_module(self.norm1_name, norm1) | |
self.conv2 = build_conv_layer( | |
conv_cfg, | |
planes, | |
planes, | |
kernel_size=3, | |
stride=self.conv2_stride, | |
padding=1, | |
bias=False, | |
) | |
self.add_module(self.norm2_name, norm2) | |
self.conv3 = build_conv_layer( | |
conv_cfg, planes, planes * self.expansion, kernel_size=1, bias=False | |
) | |
self.add_module(self.norm3_name, norm3) | |
self.relu = nn.ReLU(inplace=True) | |
def norm1(self): | |
"""nn.Module: normalization layer after the first convolution layer""" | |
return getattr(self, self.norm1_name) | |
def norm2(self): | |
"""nn.Module: normalization layer after the second convolution layer""" | |
return getattr(self, self.norm2_name) | |
def norm3(self): | |
"""nn.Module: normalization layer after the third convolution layer""" | |
return getattr(self, self.norm3_name) | |
def forward(self, x): | |
"""Forward function.""" | |
def _inner_forward(x): | |
identity = x | |
out = self.conv1(x) | |
out = self.norm1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.norm2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.norm3(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
return out | |
if self.with_cp and x.requires_grad: | |
out = cp.checkpoint(_inner_forward, x) | |
else: | |
out = _inner_forward(x) | |
out = self.relu(out) | |
return out | |