import math import numpy as np import matplotlib import cv2 eps = 0.01 def smart_resize(x, s): Ht, Wt = s if x.ndim == 2: Ho, Wo = x.shape Co = 1 else: Ho, Wo, Co = x.shape if Co == 3 or Co == 1: k = float(Ht + Wt) / float(Ho + Wo) return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4) else: return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2) def smart_resize_k(x, fx, fy): if x.ndim == 2: Ho, Wo = x.shape Co = 1 else: Ho, Wo, Co = x.shape Ht, Wt = Ho * fy, Wo * fx if Co == 3 or Co == 1: k = float(Ht + Wt) / float(Ho + Wo) return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4) else: return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2) def padRightDownCorner(img, stride, padValue): h = img.shape[0] w = img.shape[1] pad = 4 * [None] pad[0] = 0 # up pad[1] = 0 # left pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right img_padded = img pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1)) img_padded = np.concatenate((pad_up, img_padded), axis=0) pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1)) img_padded = np.concatenate((pad_left, img_padded), axis=1) pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1)) img_padded = np.concatenate((img_padded, pad_down), axis=0) pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1)) img_padded = np.concatenate((img_padded, pad_right), axis=1) return img_padded, pad def transfer(model, model_weights): transfered_model_weights = {} for weights_name in model.state_dict().keys(): transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])] return transfered_model_weights def draw_bodypose(canvas, candidate, subset): H, W, C = canvas.shape candidate = np.array(candidate) subset = np.array(subset) stickwidth = 4 limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \ [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \ [1, 16], [16, 18], [3, 17], [6, 18]] colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] for i in range(17): for n in range(len(subset)): index = subset[n][np.array(limbSeq[i]) - 1] if -1 in index: continue Y = candidate[index.astype(int), 0] * float(W) X = candidate[index.astype(int), 1] * float(H) mX = np.mean(X) mY = np.mean(Y) length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1) cv2.fillConvexPoly(canvas, polygon, colors[i]) canvas = (canvas * 0.6).astype(np.uint8) for i in range(18): for n in range(len(subset)): index = int(subset[n][i]) if index == -1: continue x, y = candidate[index][0:2] x = int(x * W) y = int(y * H) cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1) return canvas def draw_handpose(canvas, all_hand_peaks): H, W, C = canvas.shape edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \ [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]] for peaks in all_hand_peaks: peaks = np.array(peaks) for ie, e in enumerate(edges): x1, y1 = peaks[e[0]] x2, y2 = peaks[e[1]] x1 = int(x1 * W) y1 = int(y1 * H) x2 = int(x2 * W) y2 = int(y2 * H) if x1 > eps and y1 > eps and x2 > eps and y2 > eps: cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=2) for i, keyponit in enumerate(peaks): x, y = keyponit x = int(x * W) y = int(y * H) if x > eps and y > eps: cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1) return canvas def draw_facepose(canvas, all_lmks): H, W, C = canvas.shape for lmks in all_lmks: lmks = np.array(lmks) for lmk in lmks: x, y = lmk x = int(x * W) y = int(y * H) if x > eps and y > eps: cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1) return canvas # detect hand according to body pose keypoints # please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp def handDetect(candidate, subset, oriImg): # right hand: wrist 4, elbow 3, shoulder 2 # left hand: wrist 7, elbow 6, shoulder 5 ratioWristElbow = 0.33 detect_result = [] image_height, image_width = oriImg.shape[0:2] for person in subset.astype(int): # if any of three not detected has_left = np.sum(person[[5, 6, 7]] == -1) == 0 has_right = np.sum(person[[2, 3, 4]] == -1) == 0 if not (has_left or has_right): continue hands = [] #left hand if has_left: left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]] x1, y1 = candidate[left_shoulder_index][:2] x2, y2 = candidate[left_elbow_index][:2] x3, y3 = candidate[left_wrist_index][:2] hands.append([x1, y1, x2, y2, x3, y3, True]) # right hand if has_right: right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]] x1, y1 = candidate[right_shoulder_index][:2] x2, y2 = candidate[right_elbow_index][:2] x3, y3 = candidate[right_wrist_index][:2] hands.append([x1, y1, x2, y2, x3, y3, False]) for x1, y1, x2, y2, x3, y3, is_left in hands: # pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox # handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]); # handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]); # const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow); # const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder); # handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder); x = x3 + ratioWristElbow * (x3 - x2) y = y3 + ratioWristElbow * (y3 - y2) distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2) distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder) # x-y refers to the center --> offset to topLeft point # handRectangle.x -= handRectangle.width / 2.f; # handRectangle.y -= handRectangle.height / 2.f; x -= width / 2 y -= width / 2 # width = height # overflow the image if x < 0: x = 0 if y < 0: y = 0 width1 = width width2 = width if x + width > image_width: width1 = image_width - x if y + width > image_height: width2 = image_height - y width = min(width1, width2) # the max hand box value is 20 pixels if width >= 20: detect_result.append([int(x), int(y), int(width), is_left]) ''' return value: [[x, y, w, True if left hand else False]]. width=height since the network require squared input. x, y is the coordinate of top left ''' return detect_result # Written by Lvmin def faceDetect(candidate, subset, oriImg): # left right eye ear 14 15 16 17 detect_result = [] image_height, image_width = oriImg.shape[0:2] for person in subset.astype(int): has_head = person[0] > -1 if not has_head: continue has_left_eye = person[14] > -1 has_right_eye = person[15] > -1 has_left_ear = person[16] > -1 has_right_ear = person[17] > -1 if not (has_left_eye or has_right_eye or has_left_ear or has_right_ear): continue head, left_eye, right_eye, left_ear, right_ear = person[[0, 14, 15, 16, 17]] width = 0.0 x0, y0 = candidate[head][:2] if has_left_eye: x1, y1 = candidate[left_eye][:2] d = max(abs(x0 - x1), abs(y0 - y1)) width = max(width, d * 3.0) if has_right_eye: x1, y1 = candidate[right_eye][:2] d = max(abs(x0 - x1), abs(y0 - y1)) width = max(width, d * 3.0) if has_left_ear: x1, y1 = candidate[left_ear][:2] d = max(abs(x0 - x1), abs(y0 - y1)) width = max(width, d * 1.5) if has_right_ear: x1, y1 = candidate[right_ear][:2] d = max(abs(x0 - x1), abs(y0 - y1)) width = max(width, d * 1.5) x, y = x0, y0 x -= width y -= width if x < 0: x = 0 if y < 0: y = 0 width1 = width * 2 width2 = width * 2 if x + width > image_width: width1 = image_width - x if y + width > image_height: width2 = image_height - y width = min(width1, width2) if width >= 20: detect_result.append([int(x), int(y), int(width)]) return detect_result # get max index of 2d array def npmax(array): arrayindex = array.argmax(1) arrayvalue = array.max(1) i = arrayvalue.argmax() j = arrayindex[i] return i, j