mart9992's picture
m
4c65bff
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import os
from argparse import ArgumentParser, Namespace
from importlib import import_module
import huggingface_hub
import numpy as np
from packaging import version
from .. import (
FEATURE_EXTRACTOR_MAPPING,
IMAGE_PROCESSOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoConfig,
AutoFeatureExtractor,
AutoImageProcessor,
AutoProcessor,
AutoTokenizer,
is_datasets_available,
is_tf_available,
is_torch_available,
)
from ..utils import TF2_WEIGHTS_INDEX_NAME, TF2_WEIGHTS_NAME, logging
from . import BaseTransformersCLICommand
if is_tf_available():
import tensorflow as tf
tf.config.experimental.enable_tensor_float_32_execution(False)
if is_torch_available():
import torch
if is_datasets_available():
from datasets import load_dataset
MAX_ERROR = 5e-5 # larger error tolerance than in our internal tests, to avoid flaky user-facing errors
def convert_command_factory(args: Namespace):
"""
Factory function used to convert a model PyTorch checkpoint in a TensorFlow 2 checkpoint.
Returns: ServeCommand
"""
return PTtoTFCommand(
args.model_name,
args.local_dir,
args.max_error,
args.new_weights,
args.no_pr,
args.push,
args.extra_commit_description,
args.override_model_class,
)
class PTtoTFCommand(BaseTransformersCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
"""
Register this command to argparse so it's available for the transformer-cli
Args:
parser: Root parser to register command-specific arguments
"""
train_parser = parser.add_parser(
"pt-to-tf",
help=(
"CLI tool to run convert a transformers model from a PyTorch checkpoint to a TensorFlow checkpoint."
" Can also be used to validate existing weights without opening PRs, with --no-pr."
),
)
train_parser.add_argument(
"--model-name",
type=str,
required=True,
help="The model name, including owner/organization, as seen on the hub.",
)
train_parser.add_argument(
"--local-dir",
type=str,
default="",
help="Optional local directory of the model repository. Defaults to /tmp/{model_name}",
)
train_parser.add_argument(
"--max-error",
type=float,
default=MAX_ERROR,
help=(
f"Maximum error tolerance. Defaults to {MAX_ERROR}. This flag should be avoided, use at your own risk."
),
)
train_parser.add_argument(
"--new-weights",
action="store_true",
help="Optional flag to create new TensorFlow weights, even if they already exist.",
)
train_parser.add_argument(
"--no-pr", action="store_true", help="Optional flag to NOT open a PR with converted weights."
)
train_parser.add_argument(
"--push",
action="store_true",
help="Optional flag to push the weights directly to `main` (requires permissions)",
)
train_parser.add_argument(
"--extra-commit-description",
type=str,
default="",
help="Optional additional commit description to use when opening a PR (e.g. to tag the owner).",
)
train_parser.add_argument(
"--override-model-class",
type=str,
default=None,
help="If you think you know better than the auto-detector, you can specify the model class here. "
"Can be either an AutoModel class or a specific model class like BertForSequenceClassification.",
)
train_parser.set_defaults(func=convert_command_factory)
@staticmethod
def find_pt_tf_differences(pt_outputs, tf_outputs):
"""
Compares the TensorFlow and PyTorch outputs, returning a dictionary with all tensor differences.
"""
# 1. All output attributes must be the same
pt_out_attrs = set(pt_outputs.keys())
tf_out_attrs = set(tf_outputs.keys())
if pt_out_attrs != tf_out_attrs:
raise ValueError(
f"The model outputs have different attributes, aborting. (Pytorch: {pt_out_attrs}, TensorFlow:"
f" {tf_out_attrs})"
)
# 2. For each output attribute, computes the difference
def _find_pt_tf_differences(pt_out, tf_out, differences, attr_name=""):
# If the current attribute is a tensor, it is a leaf and we make the comparison. Otherwise, we will dig in
# recursivelly, keeping the name of the attribute.
if isinstance(pt_out, torch.Tensor):
tensor_difference = np.max(np.abs(pt_out.numpy() - tf_out.numpy()))
differences[attr_name] = tensor_difference
else:
root_name = attr_name
for i, pt_item in enumerate(pt_out):
# If it is a named attribute, we keep the name. Otherwise, just its index.
if isinstance(pt_item, str):
branch_name = root_name + pt_item
tf_item = tf_out[pt_item]
pt_item = pt_out[pt_item]
else:
branch_name = root_name + f"[{i}]"
tf_item = tf_out[i]
differences = _find_pt_tf_differences(pt_item, tf_item, differences, branch_name)
return differences
return _find_pt_tf_differences(pt_outputs, tf_outputs, {})
def __init__(
self,
model_name: str,
local_dir: str,
max_error: float,
new_weights: bool,
no_pr: bool,
push: bool,
extra_commit_description: str,
override_model_class: str,
*args,
):
self._logger = logging.get_logger("transformers-cli/pt_to_tf")
self._model_name = model_name
self._local_dir = local_dir if local_dir else os.path.join("/tmp", model_name)
self._max_error = max_error
self._new_weights = new_weights
self._no_pr = no_pr
self._push = push
self._extra_commit_description = extra_commit_description
self._override_model_class = override_model_class
def get_inputs(self, pt_model, tf_dummy_inputs, config):
"""
Returns the right inputs for the model, based on its signature.
"""
def _get_audio_input():
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
speech_samples = ds.sort("id").select(range(2))[:2]["audio"]
raw_samples = [x["array"] for x in speech_samples]
return raw_samples
model_config_class = type(pt_model.config)
if model_config_class in PROCESSOR_MAPPING:
processor = AutoProcessor.from_pretrained(self._local_dir)
if model_config_class in TOKENIZER_MAPPING and processor.tokenizer.pad_token is None:
processor.tokenizer.pad_token = processor.tokenizer.eos_token
elif model_config_class in IMAGE_PROCESSOR_MAPPING:
processor = AutoImageProcessor.from_pretrained(self._local_dir)
elif model_config_class in FEATURE_EXTRACTOR_MAPPING:
processor = AutoFeatureExtractor.from_pretrained(self._local_dir)
elif model_config_class in TOKENIZER_MAPPING:
processor = AutoTokenizer.from_pretrained(self._local_dir)
if processor.pad_token is None:
processor.pad_token = processor.eos_token
else:
raise ValueError(f"Unknown data processing type (model config type: {model_config_class})")
model_forward_signature = set(inspect.signature(pt_model.forward).parameters.keys())
processor_inputs = {}
if "input_ids" in model_forward_signature:
processor_inputs.update(
{
"text": ["Hi there!", "I am a batch with more than one row and different input lengths."],
"padding": True,
"truncation": True,
}
)
if "pixel_values" in model_forward_signature:
sample_images = load_dataset("cifar10", "plain_text", split="test")[:2]["img"]
processor_inputs.update({"images": sample_images})
if "input_features" in model_forward_signature:
feature_extractor_signature = inspect.signature(processor.feature_extractor).parameters
# Pad to the largest input length by default but take feature extractor default
# padding value if it exists e.g. "max_length" and is not False or None
if "padding" in feature_extractor_signature:
default_strategy = feature_extractor_signature["padding"].default
if default_strategy is not False and default_strategy is not None:
padding_strategy = default_strategy
else:
padding_strategy = True
else:
padding_strategy = True
processor_inputs.update({"audio": _get_audio_input(), "padding": padding_strategy})
if "input_values" in model_forward_signature: # Wav2Vec2 audio input
processor_inputs.update({"audio": _get_audio_input(), "padding": True})
pt_input = processor(**processor_inputs, return_tensors="pt")
tf_input = processor(**processor_inputs, return_tensors="tf")
# Extra input requirements, in addition to the input modality
if (
config.is_encoder_decoder
or (hasattr(pt_model, "encoder") and hasattr(pt_model, "decoder"))
or "decoder_input_ids" in tf_dummy_inputs
):
decoder_input_ids = np.asarray([[1], [1]], dtype=int) * (pt_model.config.decoder_start_token_id or 0)
pt_input.update({"decoder_input_ids": torch.tensor(decoder_input_ids)})
tf_input.update({"decoder_input_ids": tf.convert_to_tensor(decoder_input_ids)})
return pt_input, tf_input
def run(self):
# hub version 0.9.0 introduced the possibility of programmatically opening PRs with normal write tokens.
if version.parse(huggingface_hub.__version__) < version.parse("0.9.0"):
raise ImportError(
"The huggingface_hub version must be >= 0.9.0 to use this command. Please update your huggingface_hub"
" installation."
)
else:
from huggingface_hub import Repository, create_commit
from huggingface_hub._commit_api import CommitOperationAdd
# Fetch remote data
repo = Repository(local_dir=self._local_dir, clone_from=self._model_name)
# Load config and get the appropriate architecture -- the latter is needed to convert the head's weights
config = AutoConfig.from_pretrained(self._local_dir)
architectures = config.architectures
if self._override_model_class is not None:
if self._override_model_class.startswith("TF"):
architectures = [self._override_model_class[2:]]
else:
architectures = [self._override_model_class]
try:
pt_class = getattr(import_module("transformers"), architectures[0])
except AttributeError:
raise ValueError(f"Model class {self._override_model_class} not found in transformers.")
try:
tf_class = getattr(import_module("transformers"), "TF" + architectures[0])
except AttributeError:
raise ValueError(f"TF model class TF{self._override_model_class} not found in transformers.")
elif architectures is None: # No architecture defined -- use auto classes
pt_class = getattr(import_module("transformers"), "AutoModel")
tf_class = getattr(import_module("transformers"), "TFAutoModel")
self._logger.warning("No detected architecture, using AutoModel/TFAutoModel")
else: # Architecture defined -- use it
if len(architectures) > 1:
raise ValueError(f"More than one architecture was found, aborting. (architectures = {architectures})")
self._logger.warning(f"Detected architecture: {architectures[0]}")
pt_class = getattr(import_module("transformers"), architectures[0])
try:
tf_class = getattr(import_module("transformers"), "TF" + architectures[0])
except AttributeError:
raise AttributeError(f"The TensorFlow equivalent of {architectures[0]} doesn't exist in transformers.")
# Check the TF dummy inputs to see what keys we need in the forward pass
tf_from_pt_model = tf_class.from_config(config)
tf_dummy_inputs = tf_from_pt_model.dummy_inputs
del tf_from_pt_model # Try to keep only one model in memory at a time
# Load the model and get some basic inputs
pt_model = pt_class.from_pretrained(self._local_dir)
pt_model.eval()
pt_input, tf_input = self.get_inputs(pt_model, tf_dummy_inputs, config)
with torch.no_grad():
pt_outputs = pt_model(**pt_input, output_hidden_states=True)
del pt_model # will no longer be used, and may have a large memory footprint
tf_from_pt_model = tf_class.from_pretrained(self._local_dir, from_pt=True)
tf_from_pt_outputs = tf_from_pt_model(**tf_input, output_hidden_states=True, training=False)
# Confirms that cross loading PT weights into TF worked.
crossload_differences = self.find_pt_tf_differences(pt_outputs, tf_from_pt_outputs)
output_differences = {k: v for k, v in crossload_differences.items() if "hidden" not in k}
hidden_differences = {k: v for k, v in crossload_differences.items() if "hidden" in k}
if len(output_differences) == 0 and architectures is not None:
raise ValueError(
f"Something went wrong -- the config file has architectures ({architectures}), but no model head"
" output was found. All outputs start with 'hidden'"
)
max_crossload_output_diff = max(output_differences.values()) if output_differences else 0.0
max_crossload_hidden_diff = max(hidden_differences.values())
if max_crossload_output_diff > self._max_error or max_crossload_hidden_diff > self._max_error:
raise ValueError(
"The cross-loaded TensorFlow model has different outputs, something went wrong!\n"
+ f"\nList of maximum output differences above the threshold ({self._max_error}):\n"
+ "\n".join([f"{k}: {v:.3e}" for k, v in output_differences.items() if v > self._max_error])
+ f"\n\nList of maximum hidden layer differences above the threshold ({self._max_error}):\n"
+ "\n".join([f"{k}: {v:.3e}" for k, v in hidden_differences.items() if v > self._max_error])
)
# Save the weights in a TF format (if needed) and confirms that the results are still good
tf_weights_path = os.path.join(self._local_dir, TF2_WEIGHTS_NAME)
tf_weights_index_path = os.path.join(self._local_dir, TF2_WEIGHTS_INDEX_NAME)
if (not os.path.exists(tf_weights_path) and not os.path.exists(tf_weights_index_path)) or self._new_weights:
tf_from_pt_model.save_pretrained(self._local_dir)
del tf_from_pt_model # will no longer be used, and may have a large memory footprint
tf_model = tf_class.from_pretrained(self._local_dir)
tf_outputs = tf_model(**tf_input, output_hidden_states=True)
conversion_differences = self.find_pt_tf_differences(pt_outputs, tf_outputs)
output_differences = {k: v for k, v in conversion_differences.items() if "hidden" not in k}
hidden_differences = {k: v for k, v in conversion_differences.items() if "hidden" in k}
if len(output_differences) == 0 and architectures is not None:
raise ValueError(
f"Something went wrong -- the config file has architectures ({architectures}), but no model head"
" output was found. All outputs start with 'hidden'"
)
max_conversion_output_diff = max(output_differences.values()) if output_differences else 0.0
max_conversion_hidden_diff = max(hidden_differences.values())
if max_conversion_output_diff > self._max_error or max_conversion_hidden_diff > self._max_error:
raise ValueError(
"The converted TensorFlow model has different outputs, something went wrong!\n"
+ f"\nList of maximum output differences above the threshold ({self._max_error}):\n"
+ "\n".join([f"{k}: {v:.3e}" for k, v in output_differences.items() if v > self._max_error])
+ f"\n\nList of maximum hidden layer differences above the threshold ({self._max_error}):\n"
+ "\n".join([f"{k}: {v:.3e}" for k, v in hidden_differences.items() if v > self._max_error])
)
commit_message = "Update TF weights" if self._new_weights else "Add TF weights"
if self._push:
repo.git_add(auto_lfs_track=True)
repo.git_commit(commit_message)
repo.git_push(blocking=True) # this prints a progress bar with the upload
self._logger.warning(f"TF weights pushed into {self._model_name}")
elif not self._no_pr:
self._logger.warning("Uploading the weights into a new PR...")
commit_descrition = (
"Model converted by the [`transformers`' `pt_to_tf`"
" CLI](https://github.com/huggingface/transformers/blob/main/src/transformers/commands/pt_to_tf.py). "
"All converted model outputs and hidden layers were validated against its PyTorch counterpart.\n\n"
f"Maximum crossload output difference={max_crossload_output_diff:.3e}; "
f"Maximum crossload hidden layer difference={max_crossload_hidden_diff:.3e};\n"
f"Maximum conversion output difference={max_conversion_output_diff:.3e}; "
f"Maximum conversion hidden layer difference={max_conversion_hidden_diff:.3e};\n"
)
if self._max_error > MAX_ERROR:
commit_descrition += (
f"\n\nCAUTION: The maximum admissible error was manually increased to {self._max_error}!"
)
if self._extra_commit_description:
commit_descrition += "\n\n" + self._extra_commit_description
# sharded model -> adds all related files (index and .h5 shards)
if os.path.exists(tf_weights_index_path):
operations = [
CommitOperationAdd(path_in_repo=TF2_WEIGHTS_INDEX_NAME, path_or_fileobj=tf_weights_index_path)
]
for shard_path in tf.io.gfile.glob(self._local_dir + "/tf_model-*.h5"):
operations += [
CommitOperationAdd(path_in_repo=os.path.basename(shard_path), path_or_fileobj=shard_path)
]
else:
operations = [CommitOperationAdd(path_in_repo=TF2_WEIGHTS_NAME, path_or_fileobj=tf_weights_path)]
hub_pr_url = create_commit(
repo_id=self._model_name,
operations=operations,
commit_message=commit_message,
commit_description=commit_descrition,
repo_type="model",
create_pr=True,
).pr_url
self._logger.warning(f"PR open in {hub_pr_url}")