|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" AutoImageProcessor class.""" |
|
import importlib |
|
import json |
|
import os |
|
import warnings |
|
from collections import OrderedDict |
|
from typing import Dict, Optional, Union |
|
|
|
|
|
from ...configuration_utils import PretrainedConfig |
|
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code |
|
from ...image_processing_utils import ImageProcessingMixin |
|
from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging |
|
from .auto_factory import _LazyAutoMapping |
|
from .configuration_auto import ( |
|
CONFIG_MAPPING_NAMES, |
|
AutoConfig, |
|
model_type_to_module_name, |
|
replace_list_option_in_docstrings, |
|
) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
IMAGE_PROCESSOR_MAPPING_NAMES = OrderedDict( |
|
[ |
|
("align", "EfficientNetImageProcessor"), |
|
("beit", "BeitImageProcessor"), |
|
("bit", "BitImageProcessor"), |
|
("blip", "BlipImageProcessor"), |
|
("blip-2", "BlipImageProcessor"), |
|
("bridgetower", "BridgeTowerImageProcessor"), |
|
("chinese_clip", "ChineseCLIPImageProcessor"), |
|
("clip", "CLIPImageProcessor"), |
|
("clipseg", "ViTImageProcessor"), |
|
("conditional_detr", "ConditionalDetrImageProcessor"), |
|
("convnext", "ConvNextImageProcessor"), |
|
("convnextv2", "ConvNextImageProcessor"), |
|
("cvt", "ConvNextImageProcessor"), |
|
("data2vec-vision", "BeitImageProcessor"), |
|
("deformable_detr", "DeformableDetrImageProcessor"), |
|
("deit", "DeiTImageProcessor"), |
|
("deta", "DetaImageProcessor"), |
|
("detr", "DetrImageProcessor"), |
|
("dinat", "ViTImageProcessor"), |
|
("dinov2", "BitImageProcessor"), |
|
("donut-swin", "DonutImageProcessor"), |
|
("dpt", "DPTImageProcessor"), |
|
("efficientformer", "EfficientFormerImageProcessor"), |
|
("efficientnet", "EfficientNetImageProcessor"), |
|
("flava", "FlavaImageProcessor"), |
|
("focalnet", "BitImageProcessor"), |
|
("git", "CLIPImageProcessor"), |
|
("glpn", "GLPNImageProcessor"), |
|
("groupvit", "CLIPImageProcessor"), |
|
("idefics", "IdeficsImageProcessor"), |
|
("imagegpt", "ImageGPTImageProcessor"), |
|
("instructblip", "BlipImageProcessor"), |
|
("layoutlmv2", "LayoutLMv2ImageProcessor"), |
|
("layoutlmv3", "LayoutLMv3ImageProcessor"), |
|
("levit", "LevitImageProcessor"), |
|
("mask2former", "Mask2FormerImageProcessor"), |
|
("maskformer", "MaskFormerImageProcessor"), |
|
("mgp-str", "ViTImageProcessor"), |
|
("mobilenet_v1", "MobileNetV1ImageProcessor"), |
|
("mobilenet_v2", "MobileNetV2ImageProcessor"), |
|
("mobilevit", "MobileViTImageProcessor"), |
|
("mobilevit", "MobileViTImageProcessor"), |
|
("mobilevitv2", "MobileViTImageProcessor"), |
|
("nat", "ViTImageProcessor"), |
|
("nougat", "NougatImageProcessor"), |
|
("oneformer", "OneFormerImageProcessor"), |
|
("owlvit", "OwlViTImageProcessor"), |
|
("perceiver", "PerceiverImageProcessor"), |
|
("pix2struct", "Pix2StructImageProcessor"), |
|
("poolformer", "PoolFormerImageProcessor"), |
|
("pvt", "PvtImageProcessor"), |
|
("regnet", "ConvNextImageProcessor"), |
|
("resnet", "ConvNextImageProcessor"), |
|
("sam", "SamImageProcessor"), |
|
("segformer", "SegformerImageProcessor"), |
|
("swiftformer", "ViTImageProcessor"), |
|
("swin", "ViTImageProcessor"), |
|
("swin2sr", "Swin2SRImageProcessor"), |
|
("swinv2", "ViTImageProcessor"), |
|
("table-transformer", "DetrImageProcessor"), |
|
("timesformer", "VideoMAEImageProcessor"), |
|
("tvlt", "TvltImageProcessor"), |
|
("upernet", "SegformerImageProcessor"), |
|
("van", "ConvNextImageProcessor"), |
|
("videomae", "VideoMAEImageProcessor"), |
|
("vilt", "ViltImageProcessor"), |
|
("vit", "ViTImageProcessor"), |
|
("vit_hybrid", "ViTHybridImageProcessor"), |
|
("vit_mae", "ViTImageProcessor"), |
|
("vit_msn", "ViTImageProcessor"), |
|
("vitmatte", "VitMatteImageProcessor"), |
|
("xclip", "CLIPImageProcessor"), |
|
("yolos", "YolosImageProcessor"), |
|
] |
|
) |
|
|
|
IMAGE_PROCESSOR_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) |
|
|
|
|
|
def image_processor_class_from_name(class_name: str): |
|
for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): |
|
if class_name in extractors: |
|
module_name = model_type_to_module_name(module_name) |
|
|
|
module = importlib.import_module(f".{module_name}", "transformers.models") |
|
try: |
|
return getattr(module, class_name) |
|
except AttributeError: |
|
continue |
|
|
|
for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): |
|
if getattr(extractor, "__name__", None) == class_name: |
|
return extractor |
|
|
|
|
|
|
|
main_module = importlib.import_module("transformers") |
|
if hasattr(main_module, class_name): |
|
return getattr(main_module, class_name) |
|
|
|
return None |
|
|
|
|
|
def get_image_processor_config( |
|
pretrained_model_name_or_path: Union[str, os.PathLike], |
|
cache_dir: Optional[Union[str, os.PathLike]] = None, |
|
force_download: bool = False, |
|
resume_download: bool = False, |
|
proxies: Optional[Dict[str, str]] = None, |
|
token: Optional[Union[bool, str]] = None, |
|
revision: Optional[str] = None, |
|
local_files_only: bool = False, |
|
**kwargs, |
|
): |
|
""" |
|
Loads the image processor configuration from a pretrained model image processor configuration. |
|
|
|
Args: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`): |
|
This can be either: |
|
|
|
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on |
|
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced |
|
under a user or organization name, like `dbmdz/bert-base-german-cased`. |
|
- a path to a *directory* containing a configuration file saved using the |
|
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. |
|
|
|
cache_dir (`str` or `os.PathLike`, *optional*): |
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard |
|
cache should not be used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force to (re-)download the configuration files and override the cached versions if they |
|
exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. |
|
token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated |
|
when running `huggingface-cli login` (stored in `~/.huggingface`). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
If `True`, will only try to load the image processor configuration from local files. |
|
|
|
<Tip> |
|
|
|
Passing `token=True` is required when you want to use a private model. |
|
|
|
</Tip> |
|
|
|
Returns: |
|
`Dict`: The configuration of the image processor. |
|
|
|
Examples: |
|
|
|
```python |
|
# Download configuration from huggingface.co and cache. |
|
image_processor_config = get_image_processor_config("bert-base-uncased") |
|
# This model does not have a image processor config so the result will be an empty dict. |
|
image_processor_config = get_image_processor_config("xlm-roberta-base") |
|
|
|
# Save a pretrained image processor locally and you can reload its config |
|
from transformers import AutoTokenizer |
|
|
|
image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k") |
|
image_processor.save_pretrained("image-processor-test") |
|
image_processor_config = get_image_processor_config("image-processor-test") |
|
```""" |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if token is not None: |
|
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") |
|
token = use_auth_token |
|
|
|
resolved_config_file = get_file_from_repo( |
|
pretrained_model_name_or_path, |
|
IMAGE_PROCESSOR_NAME, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
token=token, |
|
revision=revision, |
|
local_files_only=local_files_only, |
|
) |
|
if resolved_config_file is None: |
|
logger.info( |
|
"Could not locate the image processor configuration file, will try to use the model config instead." |
|
) |
|
return {} |
|
|
|
with open(resolved_config_file, encoding="utf-8") as reader: |
|
return json.load(reader) |
|
|
|
|
|
class AutoImageProcessor: |
|
r""" |
|
This is a generic image processor class that will be instantiated as one of the image processor classes of the |
|
library when created with the [`AutoImageProcessor.from_pretrained`] class method. |
|
|
|
This class cannot be instantiated directly using `__init__()` (throws an error). |
|
""" |
|
|
|
def __init__(self): |
|
raise EnvironmentError( |
|
"AutoImageProcessor is designed to be instantiated " |
|
"using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." |
|
) |
|
|
|
@classmethod |
|
@replace_list_option_in_docstrings(IMAGE_PROCESSOR_MAPPING_NAMES) |
|
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): |
|
r""" |
|
Instantiate one of the image processor classes of the library from a pretrained model vocabulary. |
|
|
|
The image processor class to instantiate is selected based on the `model_type` property of the config object |
|
(either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's |
|
missing, by falling back to using pattern matching on `pretrained_model_name_or_path`: |
|
|
|
List options |
|
|
|
Params: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`): |
|
This can be either: |
|
|
|
- a string, the *model id* of a pretrained image_processor hosted inside a model repo on |
|
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or |
|
namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. |
|
- a path to a *directory* containing a image processor file saved using the |
|
[`~image_processing_utils.ImageProcessingMixin.save_pretrained`] method, e.g., |
|
`./my_model_directory/`. |
|
- a path or url to a saved image processor JSON *file*, e.g., |
|
`./my_model_directory/preprocessor_config.json`. |
|
cache_dir (`str` or `os.PathLike`, *optional*): |
|
Path to a directory in which a downloaded pretrained model image processor should be cached if the |
|
standard cache should not be used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force to (re-)download the image processor files and override the cached versions if |
|
they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received file. Attempts to resume the download if such a file |
|
exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. |
|
token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated |
|
when running `huggingface-cli login` (stored in `~/.huggingface`). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
return_unused_kwargs (`bool`, *optional*, defaults to `False`): |
|
If `False`, then this function returns just the final image processor object. If `True`, then this |
|
functions returns a `Tuple(image_processor, unused_kwargs)` where *unused_kwargs* is a dictionary |
|
consisting of the key/value pairs whose keys are not image processor attributes: i.e., the part of |
|
`kwargs` which has not been used to update `image_processor` and is otherwise ignored. |
|
trust_remote_code (`bool`, *optional*, defaults to `False`): |
|
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option |
|
should only be set to `True` for repositories you trust and in which you have read the code, as it will |
|
execute code present on the Hub on your local machine. |
|
kwargs (`Dict[str, Any]`, *optional*): |
|
The values in kwargs of any keys which are image processor attributes will be used to override the |
|
loaded values. Behavior concerning key/value pairs whose keys are *not* image processor attributes is |
|
controlled by the `return_unused_kwargs` keyword parameter. |
|
|
|
<Tip> |
|
|
|
Passing `token=True` is required when you want to use a private model. |
|
|
|
</Tip> |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoImageProcessor |
|
|
|
>>> # Download image processor from huggingface.co and cache. |
|
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k") |
|
|
|
>>> # If image processor files are in a directory (e.g. image processor was saved using *save_pretrained('./test/saved_model/')*) |
|
>>> # image_processor = AutoImageProcessor.from_pretrained("./test/saved_model/") |
|
```""" |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if kwargs.get("token", None) is not None: |
|
raise ValueError( |
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." |
|
) |
|
kwargs["token"] = use_auth_token |
|
|
|
config = kwargs.pop("config", None) |
|
trust_remote_code = kwargs.pop("trust_remote_code", None) |
|
kwargs["_from_auto"] = True |
|
|
|
config_dict, _ = ImageProcessingMixin.get_image_processor_dict(pretrained_model_name_or_path, **kwargs) |
|
image_processor_class = config_dict.get("image_processor_type", None) |
|
image_processor_auto_map = None |
|
if "AutoImageProcessor" in config_dict.get("auto_map", {}): |
|
image_processor_auto_map = config_dict["auto_map"]["AutoImageProcessor"] |
|
|
|
|
|
|
|
if image_processor_class is None and image_processor_auto_map is None: |
|
feature_extractor_class = config_dict.pop("feature_extractor_type", None) |
|
if feature_extractor_class is not None: |
|
logger.warning( |
|
"Could not find image processor class in the image processor config or the model config. Loading" |
|
" based on pattern matching with the model's feature extractor configuration." |
|
) |
|
image_processor_class = feature_extractor_class.replace("FeatureExtractor", "ImageProcessor") |
|
if "AutoFeatureExtractor" in config_dict.get("auto_map", {}): |
|
feature_extractor_auto_map = config_dict["auto_map"]["AutoFeatureExtractor"] |
|
image_processor_auto_map = feature_extractor_auto_map.replace("FeatureExtractor", "ImageProcessor") |
|
logger.warning( |
|
"Could not find image processor auto map in the image processor config or the model config." |
|
" Loading based on pattern matching with the model's feature extractor configuration." |
|
) |
|
|
|
|
|
if image_processor_class is None and image_processor_auto_map is None: |
|
if not isinstance(config, PretrainedConfig): |
|
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) |
|
|
|
image_processor_class = getattr(config, "image_processor_type", None) |
|
if hasattr(config, "auto_map") and "AutoImageProcessor" in config.auto_map: |
|
image_processor_auto_map = config.auto_map["AutoImageProcessor"] |
|
|
|
if image_processor_class is not None: |
|
image_processor_class = image_processor_class_from_name(image_processor_class) |
|
|
|
has_remote_code = image_processor_auto_map is not None |
|
has_local_code = image_processor_class is not None or type(config) in IMAGE_PROCESSOR_MAPPING |
|
trust_remote_code = resolve_trust_remote_code( |
|
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code |
|
) |
|
|
|
if has_remote_code and trust_remote_code: |
|
image_processor_class = get_class_from_dynamic_module( |
|
image_processor_auto_map, pretrained_model_name_or_path, **kwargs |
|
) |
|
_ = kwargs.pop("code_revision", None) |
|
if os.path.isdir(pretrained_model_name_or_path): |
|
image_processor_class.register_for_auto_class() |
|
return image_processor_class.from_dict(config_dict, **kwargs) |
|
elif image_processor_class is not None: |
|
return image_processor_class.from_dict(config_dict, **kwargs) |
|
|
|
elif type(config) in IMAGE_PROCESSOR_MAPPING: |
|
image_processor_class = IMAGE_PROCESSOR_MAPPING[type(config)] |
|
return image_processor_class.from_dict(config_dict, **kwargs) |
|
|
|
raise ValueError( |
|
f"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " |
|
f"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " |
|
f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys())}" |
|
) |
|
|
|
@staticmethod |
|
def register(config_class, image_processor_class, exist_ok=False): |
|
""" |
|
Register a new image processor for this class. |
|
|
|
Args: |
|
config_class ([`PretrainedConfig`]): |
|
The configuration corresponding to the model to register. |
|
image_processor_class ([`ImageProcessingMixin`]): The image processor to register. |
|
""" |
|
IMAGE_PROCESSOR_MAPPING.register(config_class, image_processor_class, exist_ok=exist_ok) |
|
|