|
from io import BytesIO |
|
from typing import List, Union |
|
|
|
import requests |
|
|
|
from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends |
|
from .base import PIPELINE_INIT_ARGS, Pipeline |
|
|
|
|
|
if is_decord_available(): |
|
import numpy as np |
|
from decord import VideoReader |
|
|
|
|
|
if is_torch_available(): |
|
from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@add_end_docstrings(PIPELINE_INIT_ARGS) |
|
class VideoClassificationPipeline(Pipeline): |
|
""" |
|
Video classification pipeline using any `AutoModelForVideoClassification`. This pipeline predicts the class of a |
|
video. |
|
|
|
This video classification pipeline can currently be loaded from [`pipeline`] using the following task identifier: |
|
`"video-classification"`. |
|
|
|
See the list of available models on |
|
[huggingface.co/models](https://huggingface.co/models?filter=video-classification). |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
requires_backends(self, "decord") |
|
self.check_model_type(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES) |
|
|
|
def _sanitize_parameters(self, top_k=None, num_frames=None, frame_sampling_rate=None): |
|
preprocess_params = {} |
|
if frame_sampling_rate is not None: |
|
preprocess_params["frame_sampling_rate"] = frame_sampling_rate |
|
if num_frames is not None: |
|
preprocess_params["num_frames"] = num_frames |
|
|
|
postprocess_params = {} |
|
if top_k is not None: |
|
postprocess_params["top_k"] = top_k |
|
return preprocess_params, {}, postprocess_params |
|
|
|
def __call__(self, videos: Union[str, List[str]], **kwargs): |
|
""" |
|
Assign labels to the video(s) passed as inputs. |
|
|
|
Args: |
|
videos (`str`, `List[str]`): |
|
The pipeline handles three types of videos: |
|
|
|
- A string containing a http link pointing to a video |
|
- A string containing a local path to a video |
|
|
|
The pipeline accepts either a single video or a batch of videos, which must then be passed as a string. |
|
Videos in a batch must all be in the same format: all as http links or all as local paths. |
|
top_k (`int`, *optional*, defaults to 5): |
|
The number of top labels that will be returned by the pipeline. If the provided number is higher than |
|
the number of labels available in the model configuration, it will default to the number of labels. |
|
num_frames (`int`, *optional*, defaults to `self.model.config.num_frames`): |
|
The number of frames sampled from the video to run the classification on. If not provided, will default |
|
to the number of frames specified in the model configuration. |
|
frame_sampling_rate (`int`, *optional*, defaults to 1): |
|
The sampling rate used to select frames from the video. If not provided, will default to 1, i.e. every |
|
frame will be used. |
|
|
|
Return: |
|
A dictionary or a list of dictionaries containing result. If the input is a single video, will return a |
|
dictionary, if the input is a list of several videos, will return a list of dictionaries corresponding to |
|
the videos. |
|
|
|
The dictionaries contain the following keys: |
|
|
|
- **label** (`str`) -- The label identified by the model. |
|
- **score** (`int`) -- The score attributed by the model for that label. |
|
""" |
|
return super().__call__(videos, **kwargs) |
|
|
|
def preprocess(self, video, num_frames=None, frame_sampling_rate=1): |
|
if num_frames is None: |
|
num_frames = self.model.config.num_frames |
|
|
|
if video.startswith("http://") or video.startswith("https://"): |
|
video = BytesIO(requests.get(video).content) |
|
|
|
videoreader = VideoReader(video) |
|
videoreader.seek(0) |
|
|
|
start_idx = 0 |
|
end_idx = num_frames * frame_sampling_rate - 1 |
|
indices = np.linspace(start_idx, end_idx, num=num_frames, dtype=np.int64) |
|
|
|
video = videoreader.get_batch(indices).asnumpy() |
|
video = list(video) |
|
|
|
model_inputs = self.image_processor(video, return_tensors=self.framework) |
|
return model_inputs |
|
|
|
def _forward(self, model_inputs): |
|
model_outputs = self.model(**model_inputs) |
|
return model_outputs |
|
|
|
def postprocess(self, model_outputs, top_k=5): |
|
if top_k > self.model.config.num_labels: |
|
top_k = self.model.config.num_labels |
|
|
|
if self.framework == "pt": |
|
probs = model_outputs.logits.softmax(-1)[0] |
|
scores, ids = probs.topk(top_k) |
|
else: |
|
raise ValueError(f"Unsupported framework: {self.framework}") |
|
|
|
scores = scores.tolist() |
|
ids = ids.tolist() |
|
return [{"score": score, "label": self.model.config.id2label[_id]} for score, _id in zip(scores, ids)] |
|
|