|
from typing import List, Union |
|
|
|
from ..utils import ( |
|
add_end_docstrings, |
|
is_tf_available, |
|
is_torch_available, |
|
is_vision_available, |
|
logging, |
|
requires_backends, |
|
) |
|
from .base import PIPELINE_INIT_ARGS, Pipeline |
|
|
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
from ..image_utils import load_image |
|
|
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES |
|
from ..tf_utils import stable_softmax |
|
|
|
if is_torch_available(): |
|
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@add_end_docstrings(PIPELINE_INIT_ARGS) |
|
class ImageClassificationPipeline(Pipeline): |
|
""" |
|
Image classification pipeline using any `AutoModelForImageClassification`. This pipeline predicts the class of an |
|
image. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
|
|
>>> classifier = pipeline(model="microsoft/beit-base-patch16-224-pt22k-ft22k") |
|
>>> classifier("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png") |
|
[{'score': 0.442, 'label': 'macaw'}, {'score': 0.088, 'label': 'popinjay'}, {'score': 0.075, 'label': 'parrot'}, {'score': 0.073, 'label': 'parodist, lampooner'}, {'score': 0.046, 'label': 'poll, poll_parrot'}] |
|
``` |
|
|
|
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) |
|
|
|
This image classification pipeline can currently be loaded from [`pipeline`] using the following task identifier: |
|
`"image-classification"`. |
|
|
|
See the list of available models on |
|
[huggingface.co/models](https://huggingface.co/models?filter=image-classification). |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
requires_backends(self, "vision") |
|
self.check_model_type( |
|
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES |
|
if self.framework == "tf" |
|
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES |
|
) |
|
|
|
def _sanitize_parameters(self, top_k=None, timeout=None): |
|
preprocess_params = {} |
|
if timeout is not None: |
|
preprocess_params["timeout"] = timeout |
|
postprocess_params = {} |
|
if top_k is not None: |
|
postprocess_params["top_k"] = top_k |
|
return preprocess_params, {}, postprocess_params |
|
|
|
def __call__(self, images: Union[str, List[str], "Image.Image", List["Image.Image"]], **kwargs): |
|
""" |
|
Assign labels to the image(s) passed as inputs. |
|
|
|
Args: |
|
images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): |
|
The pipeline handles three types of images: |
|
|
|
- A string containing a http link pointing to an image |
|
- A string containing a local path to an image |
|
- An image loaded in PIL directly |
|
|
|
The pipeline accepts either a single image or a batch of images, which must then be passed as a string. |
|
Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL |
|
images. |
|
top_k (`int`, *optional*, defaults to 5): |
|
The number of top labels that will be returned by the pipeline. If the provided number is higher than |
|
the number of labels available in the model configuration, it will default to the number of labels. |
|
timeout (`float`, *optional*, defaults to None): |
|
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and |
|
the call may block forever. |
|
|
|
Return: |
|
A dictionary or a list of dictionaries containing result. If the input is a single image, will return a |
|
dictionary, if the input is a list of several images, will return a list of dictionaries corresponding to |
|
the images. |
|
|
|
The dictionaries contain the following keys: |
|
|
|
- **label** (`str`) -- The label identified by the model. |
|
- **score** (`int`) -- The score attributed by the model for that label. |
|
""" |
|
return super().__call__(images, **kwargs) |
|
|
|
def preprocess(self, image, timeout=None): |
|
image = load_image(image, timeout=timeout) |
|
model_inputs = self.image_processor(images=image, return_tensors=self.framework) |
|
return model_inputs |
|
|
|
def _forward(self, model_inputs): |
|
model_outputs = self.model(**model_inputs) |
|
return model_outputs |
|
|
|
def postprocess(self, model_outputs, top_k=5): |
|
if top_k > self.model.config.num_labels: |
|
top_k = self.model.config.num_labels |
|
|
|
if self.framework == "pt": |
|
probs = model_outputs.logits.softmax(-1)[0] |
|
scores, ids = probs.topk(top_k) |
|
elif self.framework == "tf": |
|
probs = stable_softmax(model_outputs.logits, axis=-1)[0] |
|
topk = tf.math.top_k(probs, k=top_k) |
|
scores, ids = topk.values.numpy(), topk.indices.numpy() |
|
else: |
|
raise ValueError(f"Unsupported framework: {self.framework}") |
|
|
|
scores = scores.tolist() |
|
ids = ids.tolist() |
|
return [{"score": score, "label": self.model.config.id2label[_id]} for score, _id in zip(scores, ids)] |
|
|