|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes for TAPEX.""" |
|
|
|
import json |
|
import os |
|
import random |
|
from functools import lru_cache |
|
from typing import Dict, List, Optional, Tuple, Union |
|
|
|
import regex as re |
|
|
|
from ....file_utils import ExplicitEnum, PaddingStrategy, TensorType, add_end_docstrings, is_pandas_available |
|
from ....tokenization_utils import AddedToken, PreTrainedTokenizer |
|
from ....tokenization_utils_base import ENCODE_KWARGS_DOCSTRING, BatchEncoding, TextInput, TruncationStrategy |
|
from ....utils import logging |
|
|
|
|
|
if is_pandas_available(): |
|
import pandas as pd |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"microsoft/tapex-base": "https://huggingface.co/microsoft/tapex-base/resolve/main/vocab.json", |
|
}, |
|
"merges_file": { |
|
"microsoft/tapex-base": "https://huggingface.co/microsoft/tapex-base/resolve/main/merges.txt", |
|
}, |
|
} |
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { |
|
"microsoft/tapex-base": 512, |
|
} |
|
|
|
PRETRAINED_INIT_CONFIGURATION = { |
|
"microsoft/tapex-base": {"do_lower_case": True}, |
|
} |
|
|
|
|
|
class TapexTruncationStrategy(ExplicitEnum): |
|
""" |
|
Possible values for the `truncation` argument in [`~TapasTokenizer.__call__`]. Useful for tab-completion in an IDE. |
|
""" |
|
|
|
DROP_ROWS_TO_FIT = "drop_rows_to_fit" |
|
|
|
|
|
TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" |
|
add_special_tokens (`bool`, *optional*, defaults to `True`): |
|
Whether or not to encode the sequences with the special tokens relative to their model. |
|
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`): |
|
Activates and controls padding. Accepts the following values: |
|
|
|
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single |
|
sequence if provided). |
|
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum |
|
acceptable input length for the model if that argument is not provided. |
|
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different |
|
lengths). |
|
truncation (`bool`, `str`, [`TapexTruncationStrategy`] or [`~tokenization_utils_base.TruncationStrategy`], |
|
*optional*, defaults to `False`): |
|
|
|
Activates and controls truncation. Accepts the following values: |
|
|
|
- `'drop_rows_to_fit'`: Truncate to a maximum length specified with the argument `max_length` or to the |
|
maximum acceptable input length for the model if that argument is not provided. This will truncate |
|
row by row, removing rows from the table. |
|
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or |
|
to the maximum acceptable input length for the model if that argument is not provided. This will |
|
truncate token by token, removing a token from the longest sequence in the pair if a pair of |
|
sequences (or a batch of pairs) is provided. |
|
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the |
|
maximum acceptable input length for the model if that argument is not provided. This will only |
|
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. |
|
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the |
|
maximum acceptable input length for the model if that argument is not provided. This will only |
|
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. |
|
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths |
|
greater than the model maximum admissible input size). |
|
max_length (`int`, *optional*): |
|
Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to |
|
`None`, this will use the predefined model maximum length if a maximum length is required by one of the |
|
truncation/padding parameters. If the model has no specific maximum input length (like XLNet) |
|
truncation/padding to a maximum length will be deactivated. |
|
stride (`int`, *optional*, defaults to 0): |
|
If set to a number along with `max_length`, the overflowing tokens returned when |
|
`return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence |
|
returned to provide some overlap between truncated and overflowing sequences. The value of this |
|
argument defines the number of overlapping tokens. |
|
pad_to_multiple_of (`int`, *optional*): |
|
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable |
|
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). |
|
return_tensors (`str` or [`~file_utils.TensorType`], *optional*): |
|
If set, will return tensors instead of list of python integers. Acceptable values are: |
|
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects. |
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
- `'np'`: Return Numpy `np.ndarray` objects. |
|
""" |
|
|
|
|
|
@lru_cache() |
|
def bytes_to_unicode(): |
|
""" |
|
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control |
|
characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # |
|
of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset |
|
you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe |
|
vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. |
|
""" |
|
bs = ( |
|
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) |
|
) |
|
cs = bs[:] |
|
n = 0 |
|
for b in range(2**8): |
|
if b not in bs: |
|
bs.append(b) |
|
cs.append(2**8 + n) |
|
n += 1 |
|
cs = [chr(n) for n in cs] |
|
return dict(zip(bs, cs)) |
|
|
|
|
|
def get_pairs(word): |
|
""" |
|
Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length |
|
strings). |
|
""" |
|
pairs = set() |
|
prev_char = word[0] |
|
for char in word[1:]: |
|
pairs.add((prev_char, char)) |
|
prev_char = char |
|
return pairs |
|
|
|
|
|
class IndexedRowTableLinearize: |
|
""" |
|
FORMAT: col: col1 | col2 | col 3 row 1 : val1 | val2 | val3 row 2 : ... |
|
""" |
|
|
|
def process_table(self, table_content: Dict): |
|
""" |
|
Given a table, TableLinearize aims at converting it into a flatten sequence with special symbols. |
|
""" |
|
assert "header" in table_content and "rows" in table_content, self.PROMPT_MESSAGE |
|
|
|
table_str = self.process_header(table_content["header"]) + " " |
|
|
|
for i, row_example in enumerate(table_content["rows"]): |
|
|
|
table_str += self.process_row(row_example, row_index=i + 1) + " " |
|
return table_str.strip() |
|
|
|
def process_header(self, headers: List): |
|
""" |
|
Given a list of headers, TableLinearize aims at converting it into a flatten sequence with special symbols. |
|
""" |
|
return "col : " + " | ".join(headers) |
|
|
|
def process_row(self, row: List, row_index: int): |
|
""" |
|
Given a row, TableLinearize aims at converting it into a flatten sequence with special symbols. |
|
""" |
|
row_str = "" |
|
row_cell_values = [] |
|
for cell_value in row: |
|
if isinstance(cell_value, int): |
|
row_cell_values.append(str(cell_value)) |
|
else: |
|
row_cell_values.append(cell_value) |
|
row_str += " | ".join(row_cell_values) |
|
return "row " + str(row_index) + " : " + row_str |
|
|
|
|
|
class TapexTokenizer(PreTrainedTokenizer): |
|
r""" |
|
Construct a TAPEX tokenizer. Based on byte-level Byte-Pair-Encoding (BPE). |
|
|
|
This tokenizer can be used to flatten one or more table(s) and concatenate them with one or more related sentences |
|
to be used by TAPEX models. The format that the TAPEX tokenizer creates is the following: |
|
|
|
sentence col: col1 | col2 | col 3 row 1 : val1 | val2 | val3 row 2 : ... |
|
|
|
The tokenizer supports a single table + single query, a single table and multiple queries (in which case the table |
|
will be duplicated for every query), a single query and multiple tables (in which case the query will be duplicated |
|
for every table), and multiple tables and queries. In other words, you can provide a batch of tables + questions to |
|
the tokenizer for instance to prepare them for the model. |
|
|
|
Tokenization itself is based on the BPE algorithm. It is identical to the one used by BART, RoBERTa and GPT-2. |
|
|
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to |
|
this superclass for more information regarding those methods. |
|
|
|
Args: |
|
vocab_file (`str`): |
|
Path to the vocabulary file. |
|
merges_file (`str`): |
|
Path to the merges file. |
|
do_lower_case (`bool`, *optional*, defaults to `True`): |
|
Whether or not to lowercase the input when tokenizing. |
|
errors (`str`, *optional*, defaults to `"replace"`): |
|
Paradigm to follow when decoding bytes to UTF-8. See |
|
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. |
|
bos_token (`str`, *optional*, defaults to `"<s>"`): |
|
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. |
|
|
|
<Tip> |
|
|
|
When building a sequence using special tokens, this is not the token that is used for the beginning of |
|
sequence. The token used is the `cls_token`. |
|
|
|
</Tip> |
|
|
|
eos_token (`str`, *optional*, defaults to `"</s>"`): |
|
The end of sequence token. |
|
|
|
<Tip> |
|
|
|
When building a sequence using special tokens, this is not the token that is used for the end of sequence. |
|
The token used is the `sep_token`. |
|
|
|
</Tip> |
|
|
|
sep_token (`str`, *optional*, defaults to `"</s>"`): |
|
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for |
|
sequence classification or for a text and a question for question answering. It is also used as the last |
|
token of a sequence built with special tokens. |
|
cls_token (`str`, *optional*, defaults to `"<s>"`): |
|
The classifier token which is used when doing sequence classification (classification of the whole sequence |
|
instead of per-token classification). It is the first token of the sequence when built with special tokens. |
|
unk_token (`str`, *optional*, defaults to `"<unk>"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
pad_token (`str`, *optional*, defaults to `"<pad>"`): |
|
The token used for padding, for example when batching sequences of different lengths. |
|
mask_token (`str`, *optional*, defaults to `"<mask>"`): |
|
The token used for masking values. This is the token used when training this model with masked language |
|
modeling. This is the token which the model will try to predict. |
|
add_prefix_space (`bool`, *optional*, defaults to `False`): |
|
Whether or not to add an initial space to the input. This allows to treat the leading word just as any |
|
other word. (BART tokenizer detect beginning of words by the preceding space). |
|
max_cell_length (`int`, *optional*, defaults to 15): |
|
Maximum number of characters per cell when linearizing a table. If this number is exceeded, truncation |
|
takes place. |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION |
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
merges_file, |
|
do_lower_case=True, |
|
errors="replace", |
|
bos_token="<s>", |
|
eos_token="</s>", |
|
sep_token="</s>", |
|
cls_token="<s>", |
|
unk_token="<unk>", |
|
pad_token="<pad>", |
|
mask_token="<mask>", |
|
add_prefix_space=False, |
|
max_cell_length=15, |
|
**kwargs, |
|
): |
|
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token |
|
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token |
|
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token |
|
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token |
|
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token |
|
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token |
|
|
|
|
|
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token |
|
|
|
with open(vocab_file, encoding="utf-8") as vocab_handle: |
|
self.encoder = json.load(vocab_handle) |
|
self.decoder = {v: k for k, v in self.encoder.items()} |
|
self.errors = errors |
|
self.byte_encoder = bytes_to_unicode() |
|
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} |
|
with open(merges_file, encoding="utf-8") as merges_handle: |
|
bpe_merges = merges_handle.read().split("\n")[1:-1] |
|
bpe_merges = [tuple(merge.split()) for merge in bpe_merges] |
|
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) |
|
self.cache = {} |
|
self.add_prefix_space = add_prefix_space |
|
self.do_lower_case = do_lower_case |
|
|
|
|
|
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") |
|
|
|
|
|
|
|
super().__init__( |
|
vocab_file=vocab_file, |
|
merges_file=merges_file, |
|
do_lower_case=do_lower_case, |
|
errors=errors, |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
unk_token=unk_token, |
|
sep_token=sep_token, |
|
cls_token=cls_token, |
|
pad_token=pad_token, |
|
mask_token=mask_token, |
|
add_prefix_space=add_prefix_space, |
|
max_cell_length=max_cell_length, |
|
**kwargs, |
|
) |
|
|
|
self.max_cell_length = max_cell_length |
|
self.table_linearize = IndexedRowTableLinearize() |
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and |
|
adding special tokens. A TAPEX sequence has the following format: |
|
- single sequence: `<s> X </s>` |
|
- pair of sequences: `<s> A </s></s> B </s>` |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs to which the special tokens will be added. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
Returns: |
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. |
|
""" |
|
if token_ids_1 is None: |
|
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] |
|
cls = [self.cls_token_id] |
|
sep = [self.sep_token_id] |
|
return cls + token_ids_0 + sep + sep + token_ids_1 + sep |
|
|
|
def get_special_tokens_mask( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False |
|
) -> List[int]: |
|
""" |
|
Args: |
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer `prepare_for_model` method. |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
Returns: |
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
if already_has_special_tokens: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True |
|
) |
|
|
|
if token_ids_1 is None: |
|
return [1] + ([0] * len(token_ids_0)) + [1] |
|
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] |
|
|
|
def create_token_type_ids_from_sequences( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Args: |
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. TAPEX does not: |
|
make use of token type ids, therefore a list of zeros is returned. |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
Returns: |
|
`List[int]`: List of zeros. |
|
""" |
|
sep = [self.sep_token_id] |
|
cls = [self.cls_token_id] |
|
|
|
if token_ids_1 is None: |
|
return len(cls + token_ids_0 + sep) * [0] |
|
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] |
|
|
|
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): |
|
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) |
|
if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): |
|
text = " " + text |
|
return (text, kwargs) |
|
|
|
@property |
|
def vocab_size(self): |
|
return len(self.encoder) |
|
|
|
def get_vocab(self): |
|
return dict(self.encoder, **self.added_tokens_encoder) |
|
|
|
def bpe(self, token): |
|
if token in self.cache: |
|
return self.cache[token] |
|
word = tuple(token) |
|
pairs = get_pairs(word) |
|
|
|
if not pairs: |
|
return token |
|
|
|
while True: |
|
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) |
|
if bigram not in self.bpe_ranks: |
|
break |
|
first, second = bigram |
|
new_word = [] |
|
i = 0 |
|
while i < len(word): |
|
try: |
|
j = word.index(first, i) |
|
except ValueError: |
|
new_word.extend(word[i:]) |
|
break |
|
else: |
|
new_word.extend(word[i:j]) |
|
i = j |
|
|
|
if word[i] == first and i < len(word) - 1 and word[i + 1] == second: |
|
new_word.append(first + second) |
|
i += 2 |
|
else: |
|
new_word.append(word[i]) |
|
i += 1 |
|
new_word = tuple(new_word) |
|
word = new_word |
|
if len(word) == 1: |
|
break |
|
else: |
|
pairs = get_pairs(word) |
|
word = " ".join(word) |
|
self.cache[token] = word |
|
return word |
|
|
|
def _tokenize(self, text): |
|
"""Tokenize a string.""" |
|
bpe_tokens = [] |
|
for token in re.findall(self.pat, text): |
|
token = "".join( |
|
self.byte_encoder[b] for b in token.encode("utf-8") |
|
) |
|
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) |
|
return bpe_tokens |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
return self.encoder.get(token, self.encoder.get(self.unk_token)) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
return self.decoder.get(index) |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
"""Converts a sequence of tokens (string) in a single string.""" |
|
text = "".join(tokens) |
|
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) |
|
return text |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
if not os.path.isdir(save_directory): |
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory") |
|
return |
|
vocab_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] |
|
) |
|
merge_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] |
|
) |
|
|
|
with open(vocab_file, "w", encoding="utf-8") as f: |
|
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") |
|
|
|
index = 0 |
|
with open(merge_file, "w", encoding="utf-8") as writer: |
|
writer.write("#version: 0.2\n") |
|
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): |
|
if index != token_index: |
|
logger.warning( |
|
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." |
|
" Please check that the tokenizer is not corrupted!" |
|
) |
|
index = token_index |
|
writer.write(" ".join(bpe_tokens) + "\n") |
|
index += 1 |
|
|
|
return vocab_file, merge_file |
|
|
|
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) |
|
def __call__( |
|
self, |
|
table: Union["pd.DataFrame", List["pd.DataFrame"]] = None, |
|
query: Optional[Union[TextInput, List[TextInput]]] = None, |
|
answer: Union[str, List[str]] = None, |
|
add_special_tokens: bool = True, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str, TruncationStrategy] = None, |
|
max_length: Optional[int] = None, |
|
stride: int = 0, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_overflowing_tokens: bool = False, |
|
return_special_tokens_mask: bool = False, |
|
return_offsets_mapping: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
""" |
|
Main method to tokenize and prepare for the model one or several table-sequence pair(s). |
|
|
|
Args: |
|
table (`pd.DataFrame`, `List[pd.DataFrame]`): |
|
Table(s) containing tabular data. |
|
query (`str` or `List[str]`, *optional*): |
|
Sentence or batch of sentences related to one or more table(s) to be encoded. Note that the number of |
|
sentences must match the number of tables. |
|
answer (`str` or `List[str]`, *optional*): |
|
Optionally, the corresponding answer to the questions as supervision. |
|
""" |
|
|
|
if table is not None: |
|
return self.source_call_func( |
|
table=table, |
|
query=query, |
|
answer=answer, |
|
add_special_tokens=add_special_tokens, |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
stride=stride, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_tensors=return_tensors, |
|
return_token_type_ids=return_token_type_ids, |
|
return_attention_mask=return_attention_mask, |
|
return_overflowing_tokens=return_overflowing_tokens, |
|
return_special_tokens_mask=return_special_tokens_mask, |
|
return_offsets_mapping=return_offsets_mapping, |
|
return_length=return_length, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
elif answer is not None: |
|
return self.target_call_func( |
|
answer=answer, |
|
add_special_tokens=add_special_tokens, |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
stride=stride, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_tensors=return_tensors, |
|
return_token_type_ids=return_token_type_ids, |
|
return_attention_mask=return_attention_mask, |
|
return_overflowing_tokens=return_overflowing_tokens, |
|
return_special_tokens_mask=return_special_tokens_mask, |
|
return_offsets_mapping=return_offsets_mapping, |
|
return_length=return_length, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
else: |
|
raise ValueError("You need to provide either a `table` or an `answer`.") |
|
|
|
def source_call_func( |
|
self, |
|
table: Union["pd.DataFrame", List["pd.DataFrame"]], |
|
query: Optional[Union[TextInput, List[TextInput]]] = None, |
|
answer: Union[str, List[str]] = None, |
|
add_special_tokens: bool = True, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str, TruncationStrategy] = None, |
|
max_length: Optional[int] = None, |
|
stride: int = 0, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_overflowing_tokens: bool = False, |
|
return_special_tokens_mask: bool = False, |
|
return_offsets_mapping: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
|
|
valid_table = False |
|
valid_query = False |
|
|
|
|
|
if isinstance(table, pd.DataFrame): |
|
valid_table = True |
|
elif isinstance(table, (list, tuple)) and isinstance(table[0], pd.DataFrame): |
|
valid_table = True |
|
|
|
|
|
if query is None or isinstance(query, str): |
|
valid_query = True |
|
elif isinstance(query, (list, tuple)): |
|
if len(query) == 0 or isinstance(query[0], str): |
|
valid_query = True |
|
|
|
if not valid_table: |
|
raise ValueError( |
|
"table input must of type `pd.DataFrame` (single example), `List[pd.DataFrame]` (batch of examples). " |
|
) |
|
if not valid_query: |
|
raise ValueError("query input must of type `str` (single example), `List[str]` (batch of examples). ") |
|
is_batched = isinstance(table, (list, tuple)) or isinstance(query, (list, tuple)) |
|
|
|
if is_batched: |
|
return self.batch_encode_plus( |
|
table=table, |
|
query=query, |
|
answer=answer, |
|
add_special_tokens=add_special_tokens, |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_tensors=return_tensors, |
|
return_token_type_ids=return_token_type_ids, |
|
return_attention_mask=return_attention_mask, |
|
return_overflowing_tokens=return_overflowing_tokens, |
|
return_special_tokens_mask=return_special_tokens_mask, |
|
return_offsets_mapping=return_offsets_mapping, |
|
return_length=return_length, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
else: |
|
return self.encode_plus( |
|
table=table, |
|
query=query, |
|
answer=answer, |
|
add_special_tokens=add_special_tokens, |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_tensors=return_tensors, |
|
return_token_type_ids=return_token_type_ids, |
|
return_attention_mask=return_attention_mask, |
|
return_overflowing_tokens=return_overflowing_tokens, |
|
return_special_tokens_mask=return_special_tokens_mask, |
|
return_offsets_mapping=return_offsets_mapping, |
|
return_length=return_length, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
|
|
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) |
|
def batch_encode_plus( |
|
self, |
|
table: Union["pd.DataFrame", List["pd.DataFrame"]], |
|
query: Optional[List[TextInput]] = None, |
|
answer: List[str] = None, |
|
add_special_tokens: bool = True, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str] = None, |
|
max_length: Optional[int] = None, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_overflowing_tokens: bool = False, |
|
return_special_tokens_mask: bool = False, |
|
return_offsets_mapping: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
""" |
|
<Tip warning={true}> |
|
|
|
This method is deprecated, `__call__` should be used instead. |
|
|
|
</Tip> |
|
""" |
|
|
|
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
|
|
return self._batch_encode_plus( |
|
table=table, |
|
query=query, |
|
answer=answer, |
|
add_special_tokens=add_special_tokens, |
|
padding_strategy=padding_strategy, |
|
truncation_strategy=truncation_strategy, |
|
max_length=max_length, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_tensors=return_tensors, |
|
return_token_type_ids=return_token_type_ids, |
|
return_attention_mask=return_attention_mask, |
|
return_overflowing_tokens=return_overflowing_tokens, |
|
return_special_tokens_mask=return_special_tokens_mask, |
|
return_offsets_mapping=return_offsets_mapping, |
|
return_length=return_length, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
|
|
def _batch_encode_plus( |
|
self, |
|
table: Union["pd.DataFrame", List["pd.DataFrame"]], |
|
query: Optional[List[TextInput]] = None, |
|
answer: Optional[List[str]] = None, |
|
add_special_tokens: bool = True, |
|
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, |
|
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, |
|
max_length: Optional[int] = None, |
|
stride: int = 0, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_overflowing_tokens: bool = False, |
|
return_special_tokens_mask: bool = False, |
|
return_offsets_mapping: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
if return_offsets_mapping: |
|
raise NotImplementedError( |
|
"return_offset_mapping is not available when using Python tokenizers. " |
|
"To use this feature, change your tokenizer to one deriving from " |
|
"transformers.PreTrainedTokenizerFast." |
|
) |
|
|
|
if isinstance(table, pd.DataFrame) and isinstance(query, (list, tuple)): |
|
|
|
|
|
table = [table] * len(query) |
|
if isinstance(table, (list, tuple)) and isinstance(query, str): |
|
|
|
|
|
query = [query] * len(table) |
|
|
|
batch_outputs = self._batch_prepare_for_model( |
|
table=table, |
|
query=query, |
|
answer=answer, |
|
add_special_tokens=add_special_tokens, |
|
padding_strategy=padding_strategy, |
|
truncation_strategy=truncation_strategy, |
|
max_length=max_length, |
|
stride=stride, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_attention_mask=return_attention_mask, |
|
return_token_type_ids=return_token_type_ids, |
|
return_overflowing_tokens=return_overflowing_tokens, |
|
return_special_tokens_mask=return_special_tokens_mask, |
|
return_length=return_length, |
|
return_tensors=return_tensors, |
|
verbose=verbose, |
|
) |
|
|
|
return BatchEncoding(batch_outputs) |
|
|
|
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) |
|
def _batch_prepare_for_model( |
|
self, |
|
table: Union["pd.DataFrame", List["pd.DataFrame"]], |
|
query: Optional[Union[TextInput, List[TextInput]]] = None, |
|
answer: Optional[Union[str, List[str]]] = None, |
|
add_special_tokens: bool = True, |
|
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, |
|
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, |
|
max_length: Optional[int] = None, |
|
stride: int = 0, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_tensors: Optional[str] = None, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_overflowing_tokens: bool = False, |
|
return_special_tokens_mask: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
) -> BatchEncoding: |
|
""" |
|
This method adds special tokens, truncates sequences if overflowing while taking into account the special |
|
tokens and manages a moving window (with user defined stride) for overflowing tokens. |
|
""" |
|
batch_outputs = {} |
|
if answer is None: |
|
answer = [None] * len(table) |
|
for _table, _query, _answer in zip(table, query, answer): |
|
text = self.prepare_table_query( |
|
_table, _query, _answer, truncation_strategy=truncation_strategy, max_length=max_length |
|
) |
|
|
|
if self.do_lower_case: |
|
text = text.lower() |
|
|
|
tokens = self.tokenize(text) |
|
outputs = self.prepare_for_model( |
|
ids=self.convert_tokens_to_ids(tokens), |
|
add_special_tokens=add_special_tokens, |
|
padding=PaddingStrategy.DO_NOT_PAD.value, |
|
truncation=truncation_strategy.value, |
|
max_length=max_length, |
|
stride=stride, |
|
pad_to_multiple_of=None, |
|
return_attention_mask=False, |
|
return_token_type_ids=return_token_type_ids, |
|
return_overflowing_tokens=return_overflowing_tokens, |
|
return_special_tokens_mask=return_special_tokens_mask, |
|
return_length=return_length, |
|
return_tensors=None, |
|
prepend_batch_axis=False, |
|
verbose=verbose, |
|
) |
|
|
|
for key, value in outputs.items(): |
|
if key not in batch_outputs: |
|
batch_outputs[key] = [] |
|
batch_outputs[key].append(value) |
|
|
|
batch_outputs = self.pad( |
|
batch_outputs, |
|
padding=padding_strategy.value, |
|
max_length=max_length, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_attention_mask=return_attention_mask, |
|
) |
|
|
|
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) |
|
|
|
return batch_outputs |
|
|
|
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING) |
|
def encode( |
|
self, |
|
table: "pd.DataFrame", |
|
query: Optional[TextInput] = None, |
|
answer: Optional[str] = None, |
|
add_special_tokens: bool = True, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str, TruncationStrategy, TapexTruncationStrategy] = None, |
|
max_length: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
**kwargs, |
|
) -> List[int]: |
|
""" |
|
Prepare a table, a string and possible answer for the model. This method does not return token type IDs, |
|
attention masks, etc. which are necessary for the model to work correctly. Use this method if you want to build |
|
your processing on your own, otherwise refer to `__call__`. |
|
""" |
|
encoded_inputs = self.encode_plus( |
|
table, |
|
query=query, |
|
answer=answer, |
|
add_special_tokens=add_special_tokens, |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
return_tensors=return_tensors, |
|
**kwargs, |
|
) |
|
|
|
return encoded_inputs["input_ids"] |
|
|
|
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) |
|
def encode_plus( |
|
self, |
|
table: "pd.DataFrame", |
|
query: Optional[TextInput] = None, |
|
answer: Optional[str] = None, |
|
add_special_tokens: bool = True, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str] = None, |
|
max_length: Optional[int] = None, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_special_tokens_mask: bool = False, |
|
return_offsets_mapping: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
|
|
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
|
|
return self._encode_plus( |
|
table=table, |
|
query=query, |
|
answer=answer, |
|
add_special_tokens=add_special_tokens, |
|
padding_strategy=padding_strategy, |
|
truncation_strategy=truncation_strategy, |
|
max_length=max_length, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_tensors=return_tensors, |
|
return_token_type_ids=return_token_type_ids, |
|
return_attention_mask=return_attention_mask, |
|
return_special_tokens_mask=return_special_tokens_mask, |
|
return_offsets_mapping=return_offsets_mapping, |
|
return_length=return_length, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
|
|
def _encode_plus( |
|
self, |
|
table: "pd.DataFrame", |
|
query: Optional[TextInput] = None, |
|
answer: Optional[str] = None, |
|
add_special_tokens: bool = True, |
|
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, |
|
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, |
|
max_length: Optional[int] = None, |
|
stride: int = 0, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_overflowing_tokens: bool = False, |
|
return_special_tokens_mask: bool = False, |
|
return_offsets_mapping: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
if return_offsets_mapping: |
|
raise NotImplementedError( |
|
"return_offset_mapping is not available when using Python tokenizers. " |
|
"To use this feature, change your tokenizer to one deriving from " |
|
"transformers.PreTrainedTokenizerFast. " |
|
"More information on available tokenizers at " |
|
"https://github.com/huggingface/transformers/pull/2674" |
|
) |
|
|
|
text = self.prepare_table_query( |
|
table, query, answer, truncation_strategy=truncation_strategy, max_length=max_length |
|
) |
|
|
|
|
|
if self.do_lower_case: |
|
text = text.lower() |
|
|
|
tokens = self.tokenize(text) |
|
|
|
return self.prepare_for_model( |
|
ids=self.convert_tokens_to_ids(tokens), |
|
add_special_tokens=add_special_tokens, |
|
padding=padding_strategy.value, |
|
truncation=truncation_strategy.value, |
|
max_length=max_length, |
|
stride=stride, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_tensors=return_tensors, |
|
prepend_batch_axis=True, |
|
return_attention_mask=return_attention_mask, |
|
return_token_type_ids=return_token_type_ids, |
|
return_overflowing_tokens=return_overflowing_tokens, |
|
return_special_tokens_mask=return_special_tokens_mask, |
|
return_length=return_length, |
|
verbose=verbose, |
|
) |
|
|
|
def target_call_func( |
|
self, |
|
answer: Union[str, List[str]], |
|
add_special_tokens: bool = True, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str, TruncationStrategy] = None, |
|
max_length: Optional[int] = None, |
|
stride: int = 0, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_overflowing_tokens: bool = False, |
|
return_special_tokens_mask: bool = False, |
|
return_offsets_mapping: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
""" |
|
The method tokenizes and prepares the answer label for the model. |
|
|
|
Args: |
|
answer (`str` or `List[str]`): |
|
Corresponding answer supervision to the queries for training the model. |
|
""" |
|
is_batched = isinstance(answer, (list, tuple)) |
|
|
|
if is_batched: |
|
return self.target_batch_encode_plus( |
|
answer=answer, |
|
add_special_tokens=add_special_tokens, |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_tensors=return_tensors, |
|
return_token_type_ids=return_token_type_ids, |
|
return_attention_mask=return_attention_mask, |
|
return_overflowing_tokens=return_overflowing_tokens, |
|
return_special_tokens_mask=return_special_tokens_mask, |
|
return_offsets_mapping=return_offsets_mapping, |
|
return_length=return_length, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
else: |
|
return self.target_encode_plus( |
|
answer=answer, |
|
add_special_tokens=add_special_tokens, |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_tensors=return_tensors, |
|
return_token_type_ids=return_token_type_ids, |
|
return_attention_mask=return_attention_mask, |
|
return_overflowing_tokens=return_overflowing_tokens, |
|
return_special_tokens_mask=return_special_tokens_mask, |
|
return_offsets_mapping=return_offsets_mapping, |
|
return_length=return_length, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
|
|
def target_batch_encode_plus( |
|
self, |
|
answer: List[str], |
|
add_special_tokens: bool = True, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str] = None, |
|
max_length: Optional[int] = None, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_overflowing_tokens: bool = False, |
|
return_special_tokens_mask: bool = False, |
|
return_offsets_mapping: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
""" |
|
Prepare answer strings for the model. |
|
|
|
Args: |
|
answer `List[str]`: |
|
Corresponding answer supervision to the queries for training the model. |
|
""" |
|
|
|
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
|
|
return self._target_batch_encode_plus( |
|
answer=answer, |
|
add_special_tokens=add_special_tokens, |
|
padding_strategy=padding_strategy, |
|
truncation_strategy=truncation_strategy, |
|
max_length=max_length, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_tensors=return_tensors, |
|
return_token_type_ids=return_token_type_ids, |
|
return_attention_mask=return_attention_mask, |
|
return_overflowing_tokens=return_overflowing_tokens, |
|
return_special_tokens_mask=return_special_tokens_mask, |
|
return_offsets_mapping=return_offsets_mapping, |
|
return_length=return_length, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
|
|
def _target_batch_encode_plus( |
|
self, |
|
answer: List[str], |
|
add_special_tokens: bool = True, |
|
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, |
|
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, |
|
max_length: Optional[int] = None, |
|
stride: int = 0, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_overflowing_tokens: bool = False, |
|
return_special_tokens_mask: bool = False, |
|
return_offsets_mapping: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
batch_outputs = {} |
|
for text in answer: |
|
if self.do_lower_case: |
|
text = text.lower() |
|
|
|
tokens = self.tokenize(text) |
|
outputs = self.prepare_for_model( |
|
ids=self.convert_tokens_to_ids(tokens), |
|
add_special_tokens=add_special_tokens, |
|
padding=PaddingStrategy.DO_NOT_PAD.value, |
|
truncation=truncation_strategy.value, |
|
max_length=max_length, |
|
stride=stride, |
|
pad_to_multiple_of=None, |
|
return_attention_mask=False, |
|
return_token_type_ids=return_token_type_ids, |
|
return_overflowing_tokens=return_overflowing_tokens, |
|
return_special_tokens_mask=return_special_tokens_mask, |
|
return_length=return_length, |
|
return_tensors=None, |
|
prepend_batch_axis=False, |
|
verbose=verbose, |
|
) |
|
|
|
for key, value in outputs.items(): |
|
if key not in batch_outputs: |
|
batch_outputs[key] = [] |
|
batch_outputs[key].append(value) |
|
|
|
batch_outputs = self.pad( |
|
batch_outputs, |
|
padding=padding_strategy.value, |
|
max_length=max_length, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_attention_mask=return_attention_mask, |
|
) |
|
|
|
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) |
|
|
|
return BatchEncoding(batch_outputs) |
|
|
|
def target_encode( |
|
self, |
|
answer: str, |
|
add_special_tokens: bool = True, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str, TruncationStrategy, TapexTruncationStrategy] = None, |
|
max_length: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
**kwargs, |
|
) -> List[int]: |
|
""" |
|
Prepare the answer string for the model. This method does not return token type IDs, attention masks, etc. |
|
which are necessary for the model to work correctly. Use this method if you want to build your processing on |
|
your own, otherwise refer to `__call__`. |
|
|
|
Args: |
|
answer `str`: |
|
Corresponding answer supervision to the queries for training the model |
|
""" |
|
encoded_outputs = self.target_encode_plus( |
|
answer=answer, |
|
add_special_tokens=add_special_tokens, |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
return_tensors=return_tensors, |
|
**kwargs, |
|
) |
|
|
|
return encoded_outputs["input_ids"] |
|
|
|
def target_encode_plus( |
|
self, |
|
answer: str, |
|
add_special_tokens: bool = True, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str] = None, |
|
max_length: Optional[int] = None, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_special_tokens_mask: bool = False, |
|
return_offsets_mapping: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
""" |
|
Prepare a answer string for the model. |
|
|
|
Args: |
|
answer `str`: |
|
Corresponding answer supervision to the queries for training the model. |
|
""" |
|
|
|
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
|
|
return self._target_encode_plus( |
|
answer=answer, |
|
add_special_tokens=add_special_tokens, |
|
padding_strategy=padding_strategy, |
|
truncation_strategy=truncation_strategy, |
|
max_length=max_length, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_tensors=return_tensors, |
|
return_token_type_ids=return_token_type_ids, |
|
return_attention_mask=return_attention_mask, |
|
return_special_tokens_mask=return_special_tokens_mask, |
|
return_offsets_mapping=return_offsets_mapping, |
|
return_length=return_length, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
|
|
def _target_encode_plus( |
|
self, |
|
answer: str, |
|
add_special_tokens: bool = True, |
|
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, |
|
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, |
|
max_length: Optional[int] = None, |
|
stride: int = 0, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_overflowing_tokens: bool = False, |
|
return_special_tokens_mask: bool = False, |
|
return_offsets_mapping: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
if return_offsets_mapping: |
|
raise NotImplementedError( |
|
"return_offset_mapping is not available when using Python tokenizers. " |
|
"To use this feature, change your tokenizer to one deriving from " |
|
"transformers.PreTrainedTokenizerFast. " |
|
"More information on available tokenizers at " |
|
"https://github.com/huggingface/transformers/pull/2674" |
|
) |
|
|
|
text = answer |
|
|
|
|
|
if self.do_lower_case: |
|
text = text.lower() |
|
|
|
tokens = self.tokenize(text) |
|
|
|
return self.prepare_for_model( |
|
ids=self.convert_tokens_to_ids(tokens), |
|
add_special_tokens=add_special_tokens, |
|
padding=padding_strategy.value, |
|
truncation=truncation_strategy.value, |
|
max_length=max_length, |
|
stride=stride, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_tensors=return_tensors, |
|
prepend_batch_axis=True, |
|
return_attention_mask=return_attention_mask, |
|
return_token_type_ids=return_token_type_ids, |
|
return_overflowing_tokens=return_overflowing_tokens, |
|
return_special_tokens_mask=return_special_tokens_mask, |
|
return_length=return_length, |
|
verbose=verbose, |
|
) |
|
|
|
def prepare_table_query( |
|
self, |
|
table, |
|
query, |
|
answer=None, |
|
truncation_strategy=Union[str, TruncationStrategy, TapexTruncationStrategy], |
|
max_length=None, |
|
): |
|
""" |
|
This method can be used to linearize a table and add a corresponding query. |
|
|
|
Optionally, it also handles truncation of the table (cells). |
|
|
|
An answer can be provided for more precise truncation. |
|
""" |
|
if not table.empty: |
|
|
|
table_content = {"header": list(table.columns), "rows": [list(row.values) for i, row in table.iterrows()]} |
|
|
|
|
|
|
|
|
|
self.truncate_table_cells(table_content, query, answer) |
|
if truncation_strategy == TapexTruncationStrategy.DROP_ROWS_TO_FIT: |
|
self.truncate_table_rows(table_content, query, answer, max_length=max_length) |
|
|
|
|
|
linear_table = self.table_linearize.process_table(table_content) |
|
else: |
|
linear_table = "" |
|
|
|
if linear_table == "": |
|
logger.warning( |
|
"You provide an empty table, or all cells contain much tokens (e.g., >= 1024 tokens). " |
|
+ f"Please carefully check the corresponding table with the query : {query}." |
|
) |
|
if query == "": |
|
logger.warning("You provide nothing to query with respect to the table.") |
|
|
|
separator = " " if query and linear_table else "" |
|
joint_input = (query + separator + linear_table) if query else linear_table |
|
|
|
return joint_input |
|
|
|
def truncate_table_cells(self, table_content: Dict, question: str, answer: List): |
|
|
|
cell_mapping = {} |
|
for row in table_content["rows"]: |
|
for i, cell in enumerate(row): |
|
truncate_cell = self.truncate_cell(cell) |
|
if truncate_cell is not None: |
|
cell_mapping[cell] = truncate_cell |
|
row[i] = truncate_cell |
|
|
|
|
|
if answer is not None: |
|
for i, case in enumerate(answer): |
|
if case in cell_mapping.keys(): |
|
answer[i] = cell_mapping[case] |
|
|
|
def truncate_cell(self, cell_value): |
|
|
|
if isinstance(cell_value, int) or isinstance(cell_value, float): |
|
return cell_value |
|
if cell_value.strip() != "": |
|
try_tokens = self.tokenize(cell_value) |
|
if len(try_tokens) >= self.max_cell_length: |
|
retain_tokens = try_tokens[: self.max_cell_length] |
|
retain_cell_value = self.convert_tokens_to_string(retain_tokens) |
|
return retain_cell_value |
|
else: |
|
return None |
|
else: |
|
return cell_value |
|
|
|
def truncate_table_rows( |
|
self, table_content: Dict, question: str, answer: Optional[Union[str, List[str]]] = None, max_length=None |
|
): |
|
""" |
|
Args: |
|
table_content: |
|
{"header": xxx, "rows": xxx, "id" (Optionally): xxx} |
|
|
|
question: |
|
natural language sentence |
|
|
|
answer: |
|
if for training, is the supervision; otherwise will be empty |
|
""" |
|
delete_ratio, remain_token_len = self.estimate_delete_ratio(table_content, question, max_length) |
|
|
|
self.delete_unrelated_rows(table_content, question, answer, delete_ratio) |
|
|
|
maximum_keep_rows = 0 |
|
for ind, row_example in enumerate(table_content["rows"]): |
|
value_string = self.table_linearize.process_row(row_example, ind + 1) |
|
value_token_len = len(self.tokenize(value_string)) |
|
|
|
if value_token_len > remain_token_len: |
|
break |
|
remain_token_len -= value_token_len |
|
maximum_keep_rows += 1 |
|
del table_content["rows"][maximum_keep_rows:] |
|
|
|
def estimate_delete_ratio(self, table_content: Dict, question: str, max_length=None): |
|
if "header" not in table_content or "rows" not in table_content: |
|
raise ValueError("The table content should contain both 'header' and 'rows' keys.") |
|
|
|
question_tokens = self.tokenize(question, add_special_tokens=True) |
|
|
|
header_string = self.table_linearize.process_header(table_content["header"]) |
|
header_tokens = self.tokenize(header_string, add_special_tokens=False) |
|
|
|
used_token_len = len(question_tokens) + len(header_tokens) |
|
|
|
remain_token_len = max_length - used_token_len |
|
|
|
value_string = "" |
|
for _, row_example in enumerate(table_content["rows"]): |
|
|
|
value_string += self.table_linearize.process_row(row_example, 100) + " " |
|
value_token_len = len(self.tokenize(value_string)) |
|
|
|
if value_token_len < remain_token_len: |
|
|
|
return 0.0, remain_token_len |
|
else: |
|
|
|
return 1.0 - remain_token_len / value_token_len, remain_token_len |
|
|
|
def delete_unrelated_rows(self, table_content: Dict, question: str, answer: List, delete_ratio: float): |
|
""" |
|
The argument answer is used only during training. |
|
""" |
|
truncated_unrelated_indices = [] |
|
related_indices = [] |
|
if answer is None or len(answer) == 0: |
|
answer_set = set() |
|
else: |
|
answer_set = {ans_ex.lower() for ans_ex in answer} |
|
|
|
if question is not None: |
|
answer_set.update(question.split()) |
|
question_set = set(question.strip("?!.,").split(" ")) |
|
row_max_len = len(table_content["rows"]) |
|
for _row_idx, row in enumerate(table_content["rows"]): |
|
lower_row = {str(cell).lower() for cell in row} |
|
if len(lower_row & answer_set) == 0 and len(lower_row & question_set) == 0: |
|
truncated_unrelated_indices.append(_row_idx) |
|
else: |
|
|
|
related_indices.extend([_row_idx - 2, _row_idx - 1, _row_idx, _row_idx + 1, _row_idx + 2]) |
|
|
|
|
|
truncated_unrelated_indices = [ |
|
_row_idx for _row_idx in truncated_unrelated_indices if _row_idx not in related_indices |
|
] |
|
|
|
drop_items = min(len(truncated_unrelated_indices), int(len(table_content["rows"]) * delete_ratio)) |
|
drop_row_indices = random.choices(truncated_unrelated_indices, k=drop_items) |
|
|
|
for _row_idx in reversed(range(row_max_len)): |
|
if _row_idx in drop_row_indices: |
|
del table_content["rows"][_row_idx] |
|
|
|
|
|
if "id" in table_content and len(drop_row_indices) > 0: |
|
logger.warning("Delete {:.2f} rows in table {}".format(len(drop_row_indices), table_content["id"])) |
|
|