|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch DeiT model.""" |
|
|
|
|
|
import collections.abc |
|
import math |
|
from dataclasses import dataclass |
|
from typing import Optional, Set, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from ...activations import ACT2FN |
|
from ...modeling_outputs import ( |
|
BaseModelOutput, |
|
BaseModelOutputWithPooling, |
|
ImageClassifierOutput, |
|
MaskedImageModelingOutput, |
|
) |
|
from ...modeling_utils import PreTrainedModel |
|
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer |
|
from ...utils import ( |
|
ModelOutput, |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from .configuration_deit import DeiTConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
_CONFIG_FOR_DOC = "DeiTConfig" |
|
|
|
|
|
_CHECKPOINT_FOR_DOC = "facebook/deit-base-distilled-patch16-224" |
|
_EXPECTED_OUTPUT_SHAPE = [1, 198, 768] |
|
|
|
|
|
_IMAGE_CLASS_CHECKPOINT = "facebook/deit-base-distilled-patch16-224" |
|
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" |
|
|
|
|
|
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"facebook/deit-base-distilled-patch16-224", |
|
|
|
] |
|
|
|
|
|
class DeiTEmbeddings(nn.Module): |
|
""" |
|
Construct the CLS token, distillation token, position and patch embeddings. Optionally, also the mask token. |
|
""" |
|
|
|
def __init__(self, config: DeiTConfig, use_mask_token: bool = False) -> None: |
|
super().__init__() |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) |
|
self.distillation_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) |
|
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None |
|
self.patch_embeddings = DeiTPatchEmbeddings(config) |
|
num_patches = self.patch_embeddings.num_patches |
|
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 2, config.hidden_size)) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None) -> torch.Tensor: |
|
embeddings = self.patch_embeddings(pixel_values) |
|
batch_size, seq_length, _ = embeddings.size() |
|
|
|
if bool_masked_pos is not None: |
|
mask_tokens = self.mask_token.expand(batch_size, seq_length, -1) |
|
|
|
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) |
|
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask |
|
|
|
cls_tokens = self.cls_token.expand(batch_size, -1, -1) |
|
distillation_tokens = self.distillation_token.expand(batch_size, -1, -1) |
|
embeddings = torch.cat((cls_tokens, distillation_tokens, embeddings), dim=1) |
|
embeddings = embeddings + self.position_embeddings |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
|
|
class DeiTPatchEmbeddings(nn.Module): |
|
""" |
|
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial |
|
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a |
|
Transformer. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
image_size, patch_size = config.image_size, config.patch_size |
|
num_channels, hidden_size = config.num_channels, config.hidden_size |
|
|
|
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) |
|
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) |
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) |
|
self.image_size = image_size |
|
self.patch_size = patch_size |
|
self.num_channels = num_channels |
|
self.num_patches = num_patches |
|
|
|
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) |
|
|
|
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: |
|
batch_size, num_channels, height, width = pixel_values.shape |
|
if num_channels != self.num_channels: |
|
raise ValueError( |
|
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." |
|
) |
|
if height != self.image_size[0] or width != self.image_size[1]: |
|
raise ValueError( |
|
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." |
|
) |
|
x = self.projection(pixel_values).flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
|
|
class DeiTSelfAttention(nn.Module): |
|
def __init__(self, config: DeiTConfig) -> None: |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): |
|
raise ValueError( |
|
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " |
|
f"heads {config.num_attention_heads}." |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
|
|
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False |
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(new_context_layer_shape) |
|
|
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
|
|
return outputs |
|
|
|
|
|
|
|
class DeiTSelfOutput(nn.Module): |
|
""" |
|
The residual connection is defined in DeiTLayer instead of here (as is the case with other models), due to the |
|
layernorm applied before each block. |
|
""" |
|
|
|
def __init__(self, config: DeiTConfig) -> None: |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
class DeiTAttention(nn.Module): |
|
def __init__(self, config: DeiTConfig) -> None: |
|
super().__init__() |
|
self.attention = DeiTSelfAttention(config) |
|
self.output = DeiTSelfOutput(config) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads: Set[int]) -> None: |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads |
|
) |
|
|
|
|
|
self.attention.query = prune_linear_layer(self.attention.query, index) |
|
self.attention.key = prune_linear_layer(self.attention.key, index) |
|
self.attention.value = prune_linear_layer(self.attention.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) |
|
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: |
|
self_outputs = self.attention(hidden_states, head_mask, output_attentions) |
|
|
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
|
|
outputs = (attention_output,) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
|
|
class DeiTIntermediate(nn.Module): |
|
def __init__(self, config: DeiTConfig) -> None: |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
class DeiTOutput(nn.Module): |
|
def __init__(self, config: DeiTConfig) -> None: |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
hidden_states = hidden_states + input_tensor |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
class DeiTLayer(nn.Module): |
|
"""This corresponds to the Block class in the timm implementation.""" |
|
|
|
def __init__(self, config: DeiTConfig) -> None: |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = DeiTAttention(config) |
|
self.intermediate = DeiTIntermediate(config) |
|
self.output = DeiTOutput(config) |
|
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: |
|
self_attention_outputs = self.attention( |
|
self.layernorm_before(hidden_states), |
|
head_mask, |
|
output_attentions=output_attentions, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
outputs = self_attention_outputs[1:] |
|
|
|
|
|
hidden_states = attention_output + hidden_states |
|
|
|
|
|
layer_output = self.layernorm_after(hidden_states) |
|
layer_output = self.intermediate(layer_output) |
|
|
|
|
|
layer_output = self.output(layer_output, hidden_states) |
|
|
|
outputs = (layer_output,) + outputs |
|
|
|
return outputs |
|
|
|
|
|
|
|
class DeiTEncoder(nn.Module): |
|
def __init__(self, config: DeiTConfig) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList([DeiTLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = True, |
|
) -> Union[tuple, BaseModelOutput]: |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
|
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
layer_head_mask, |
|
) |
|
else: |
|
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
class DeiTPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = DeiTConfig |
|
base_model_prefix = "deit" |
|
main_input_name = "pixel_values" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["DeiTLayer"] |
|
|
|
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: |
|
"""Initialize the weights""" |
|
if isinstance(module, (nn.Linear, nn.Conv2d)): |
|
|
|
|
|
module.weight.data = nn.init.trunc_normal_( |
|
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range |
|
).to(module.weight.dtype) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def _set_gradient_checkpointing(self, module: DeiTEncoder, value: bool = False) -> None: |
|
if isinstance(module, DeiTEncoder): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
DEIT_START_DOCSTRING = r""" |
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it |
|
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and |
|
behavior. |
|
|
|
Parameters: |
|
config ([`DeiTConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
DEIT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See |
|
[`DeiTImageProcessor.__call__`] for details. |
|
|
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare DeiT Model transformer outputting raw hidden-states without any specific head on top.", |
|
DEIT_START_DOCSTRING, |
|
) |
|
class DeiTModel(DeiTPreTrainedModel): |
|
def __init__(self, config: DeiTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False) -> None: |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = DeiTEmbeddings(config, use_mask_token=use_mask_token) |
|
self.encoder = DeiTEncoder(config) |
|
|
|
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.pooler = DeiTPooler(config) if add_pooling_layer else None |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> DeiTPatchEmbeddings: |
|
return self.embeddings.patch_embeddings |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPooling, |
|
config_class=_CONFIG_FOR_DOC, |
|
modality="vision", |
|
expected_output=_EXPECTED_OUTPUT_SHAPE, |
|
) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
bool_masked_pos: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPooling]: |
|
r""" |
|
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): |
|
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if pixel_values is None: |
|
raise ValueError("You have to specify pixel_values") |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
|
|
expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype |
|
if pixel_values.dtype != expected_dtype: |
|
pixel_values = pixel_values.to(expected_dtype) |
|
|
|
embedding_output = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
sequence_output = self.layernorm(sequence_output) |
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
|
|
if not return_dict: |
|
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) |
|
return head_outputs + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPooling( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
|
|
class DeiTPooler(nn.Module): |
|
def __init__(self, config: DeiTConfig): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states): |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
@add_start_docstrings( |
|
"""DeiT Model with a decoder on top for masked image modeling, as proposed in [SimMIM](https://arxiv.org/abs/2111.09886). |
|
|
|
<Tip> |
|
|
|
Note that we provide a script to pre-train this model on custom data in our [examples |
|
directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining). |
|
|
|
</Tip> |
|
""", |
|
DEIT_START_DOCSTRING, |
|
) |
|
class DeiTForMaskedImageModeling(DeiTPreTrainedModel): |
|
def __init__(self, config: DeiTConfig) -> None: |
|
super().__init__(config) |
|
|
|
self.deit = DeiTModel(config, add_pooling_layer=False, use_mask_token=True) |
|
|
|
self.decoder = nn.Sequential( |
|
nn.Conv2d( |
|
in_channels=config.hidden_size, |
|
out_channels=config.encoder_stride**2 * config.num_channels, |
|
kernel_size=1, |
|
), |
|
nn.PixelShuffle(config.encoder_stride), |
|
) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=MaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
bool_masked_pos: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[tuple, MaskedImageModelingOutput]: |
|
r""" |
|
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): |
|
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). |
|
|
|
Returns: |
|
|
|
Examples: |
|
```python |
|
>>> from transformers import AutoImageProcessor, DeiTForMaskedImageModeling |
|
>>> import torch |
|
>>> from PIL import Image |
|
>>> import requests |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224") |
|
>>> model = DeiTForMaskedImageModeling.from_pretrained("facebook/deit-base-distilled-patch16-224") |
|
|
|
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 |
|
>>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values |
|
>>> # create random boolean mask of shape (batch_size, num_patches) |
|
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool() |
|
|
|
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) |
|
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction |
|
>>> list(reconstructed_pixel_values.shape) |
|
[1, 3, 224, 224] |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.deit( |
|
pixel_values, |
|
bool_masked_pos=bool_masked_pos, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
|
|
sequence_output = sequence_output[:, 1:-1] |
|
batch_size, sequence_length, num_channels = sequence_output.shape |
|
height = width = int(sequence_length**0.5) |
|
sequence_output = sequence_output.permute(0, 2, 1).reshape(batch_size, num_channels, height, width) |
|
|
|
|
|
reconstructed_pixel_values = self.decoder(sequence_output) |
|
|
|
masked_im_loss = None |
|
if bool_masked_pos is not None: |
|
size = self.config.image_size // self.config.patch_size |
|
bool_masked_pos = bool_masked_pos.reshape(-1, size, size) |
|
mask = ( |
|
bool_masked_pos.repeat_interleave(self.config.patch_size, 1) |
|
.repeat_interleave(self.config.patch_size, 2) |
|
.unsqueeze(1) |
|
.contiguous() |
|
) |
|
reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none") |
|
masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels |
|
|
|
if not return_dict: |
|
output = (reconstructed_pixel_values,) + outputs[1:] |
|
return ((masked_im_loss,) + output) if masked_im_loss is not None else output |
|
|
|
return MaskedImageModelingOutput( |
|
loss=masked_im_loss, |
|
reconstruction=reconstructed_pixel_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
DeiT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of |
|
the [CLS] token) e.g. for ImageNet. |
|
""", |
|
DEIT_START_DOCSTRING, |
|
) |
|
class DeiTForImageClassification(DeiTPreTrainedModel): |
|
def __init__(self, config: DeiTConfig) -> None: |
|
super().__init__(config) |
|
|
|
self.num_labels = config.num_labels |
|
self.deit = DeiTModel(config, add_pooling_layer=False) |
|
|
|
|
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[tuple, ImageClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
|
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoImageProcessor, DeiTForImageClassification |
|
>>> import torch |
|
>>> from PIL import Image |
|
>>> import requests |
|
|
|
>>> torch.manual_seed(3) # doctest: +IGNORE_RESULT |
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> # note: we are loading a DeiTForImageClassificationWithTeacher from the hub here, |
|
>>> # so the head will be randomly initialized, hence the predictions will be random |
|
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224") |
|
>>> model = DeiTForImageClassification.from_pretrained("facebook/deit-base-distilled-patch16-224") |
|
|
|
>>> inputs = image_processor(images=image, return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
>>> logits = outputs.logits |
|
>>> # model predicts one of the 1000 ImageNet classes |
|
>>> predicted_class_idx = logits.argmax(-1).item() |
|
>>> print("Predicted class:", model.config.id2label[predicted_class_idx]) |
|
Predicted class: magpie |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.deit( |
|
pixel_values, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
logits = self.classifier(sequence_output[:, 0, :]) |
|
|
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return ImageClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@dataclass |
|
class DeiTForImageClassificationWithTeacherOutput(ModelOutput): |
|
""" |
|
Output type of [`DeiTForImageClassificationWithTeacher`]. |
|
|
|
Args: |
|
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): |
|
Prediction scores as the average of the cls_logits and distillation logits. |
|
cls_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): |
|
Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the |
|
class token). |
|
distillation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): |
|
Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the |
|
distillation token). |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of |
|
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer |
|
plus the initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in |
|
the self-attention heads. |
|
""" |
|
|
|
logits: torch.FloatTensor = None |
|
cls_logits: torch.FloatTensor = None |
|
distillation_logits: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
DeiT Model transformer with image classification heads on top (a linear layer on top of the final hidden state of |
|
the [CLS] token and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet. |
|
|
|
.. warning:: |
|
|
|
This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet |
|
supported. |
|
""", |
|
DEIT_START_DOCSTRING, |
|
) |
|
class DeiTForImageClassificationWithTeacher(DeiTPreTrainedModel): |
|
def __init__(self, config: DeiTConfig) -> None: |
|
super().__init__(config) |
|
|
|
self.num_labels = config.num_labels |
|
self.deit = DeiTModel(config, add_pooling_layer=False) |
|
|
|
|
|
self.cls_classifier = ( |
|
nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() |
|
) |
|
self.distillation_classifier = ( |
|
nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() |
|
) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_IMAGE_CLASS_CHECKPOINT, |
|
output_type=DeiTForImageClassificationWithTeacherOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, |
|
) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[tuple, DeiTForImageClassificationWithTeacherOutput]: |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.deit( |
|
pixel_values, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
cls_logits = self.cls_classifier(sequence_output[:, 0, :]) |
|
distillation_logits = self.distillation_classifier(sequence_output[:, 1, :]) |
|
|
|
|
|
logits = (cls_logits + distillation_logits) / 2 |
|
|
|
if not return_dict: |
|
output = (logits, cls_logits, distillation_logits) + outputs[1:] |
|
return output |
|
|
|
return DeiTForImageClassificationWithTeacherOutput( |
|
logits=logits, |
|
cls_logits=cls_logits, |
|
distillation_logits=distillation_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|