|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" CvT model configuration""" |
|
|
|
from ...configuration_utils import PretrainedConfig |
|
from ...utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
CVT_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", |
|
|
|
} |
|
|
|
|
|
class CvtConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`CvtModel`]. It is used to instantiate a CvT model |
|
according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the CvT |
|
[microsoft/cvt-13](https://huggingface.co/microsoft/cvt-13) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
num_channels (`int`, *optional*, defaults to 3): |
|
The number of input channels. |
|
patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3]`): |
|
The kernel size of each encoder's patch embedding. |
|
patch_stride (`List[int]`, *optional*, defaults to `[4, 2, 2]`): |
|
The stride size of each encoder's patch embedding. |
|
patch_padding (`List[int]`, *optional*, defaults to `[2, 1, 1]`): |
|
The padding size of each encoder's patch embedding. |
|
embed_dim (`List[int]`, *optional*, defaults to `[64, 192, 384]`): |
|
Dimension of each of the encoder blocks. |
|
num_heads (`List[int]`, *optional*, defaults to `[1, 3, 6]`): |
|
Number of attention heads for each attention layer in each block of the Transformer encoder. |
|
depth (`List[int]`, *optional*, defaults to `[1, 2, 10]`): |
|
The number of layers in each encoder block. |
|
mlp_ratios (`List[float]`, *optional*, defaults to `[4.0, 4.0, 4.0, 4.0]`): |
|
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the |
|
encoder blocks. |
|
attention_drop_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.0]`): |
|
The dropout ratio for the attention probabilities. |
|
drop_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.0]`): |
|
The dropout ratio for the patch embeddings probabilities. |
|
drop_path_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.1]`): |
|
The dropout probability for stochastic depth, used in the blocks of the Transformer encoder. |
|
qkv_bias (`List[bool]`, *optional*, defaults to `[True, True, True]`): |
|
The bias bool for query, key and value in attentions |
|
cls_token (`List[bool]`, *optional*, defaults to `[False, False, True]`): |
|
Whether or not to add a classification token to the output of each of the last 3 stages. |
|
qkv_projection_method (`List[string]`, *optional*, defaults to ["dw_bn", "dw_bn", "dw_bn"]`): |
|
The projection method for query, key and value Default is depth-wise convolutions with batch norm. For |
|
Linear projection use "avg". |
|
kernel_qkv (`List[int]`, *optional*, defaults to `[3, 3, 3]`): |
|
The kernel size for query, key and value in attention layer |
|
padding_kv (`List[int]`, *optional*, defaults to `[1, 1, 1]`): |
|
The padding size for key and value in attention layer |
|
stride_kv (`List[int]`, *optional*, defaults to `[2, 2, 2]`): |
|
The stride size for key and value in attention layer |
|
padding_q (`List[int]`, *optional*, defaults to `[1, 1, 1]`): |
|
The padding size for query in attention layer |
|
stride_q (`List[int]`, *optional*, defaults to `[1, 1, 1]`): |
|
The stride size for query in attention layer |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-6): |
|
The epsilon used by the layer normalization layers. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import CvtConfig, CvtModel |
|
|
|
>>> # Initializing a Cvt msft/cvt style configuration |
|
>>> configuration = CvtConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the msft/cvt style configuration |
|
>>> model = CvtModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "cvt" |
|
|
|
def __init__( |
|
self, |
|
num_channels=3, |
|
patch_sizes=[7, 3, 3], |
|
patch_stride=[4, 2, 2], |
|
patch_padding=[2, 1, 1], |
|
embed_dim=[64, 192, 384], |
|
num_heads=[1, 3, 6], |
|
depth=[1, 2, 10], |
|
mlp_ratio=[4.0, 4.0, 4.0], |
|
attention_drop_rate=[0.0, 0.0, 0.0], |
|
drop_rate=[0.0, 0.0, 0.0], |
|
drop_path_rate=[0.0, 0.0, 0.1], |
|
qkv_bias=[True, True, True], |
|
cls_token=[False, False, True], |
|
qkv_projection_method=["dw_bn", "dw_bn", "dw_bn"], |
|
kernel_qkv=[3, 3, 3], |
|
padding_kv=[1, 1, 1], |
|
stride_kv=[2, 2, 2], |
|
padding_q=[1, 1, 1], |
|
stride_q=[1, 1, 1], |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
self.num_channels = num_channels |
|
self.patch_sizes = patch_sizes |
|
self.patch_stride = patch_stride |
|
self.patch_padding = patch_padding |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.depth = depth |
|
self.mlp_ratio = mlp_ratio |
|
self.attention_drop_rate = attention_drop_rate |
|
self.drop_rate = drop_rate |
|
self.drop_path_rate = drop_path_rate |
|
self.qkv_bias = qkv_bias |
|
self.cls_token = cls_token |
|
self.qkv_projection_method = qkv_projection_method |
|
self.kernel_qkv = kernel_qkv |
|
self.padding_kv = padding_kv |
|
self.stride_kv = stride_kv |
|
self.padding_q = padding_q |
|
self.stride_q = stride_q |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
|