|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes for CPMAnt.""" |
|
import collections |
|
import os |
|
from typing import List, Optional, Tuple |
|
|
|
from transformers.utils import is_jieba_available, requires_backends |
|
|
|
|
|
if is_jieba_available(): |
|
import jieba |
|
|
|
from ...tokenization_utils import PreTrainedTokenizer |
|
from ...utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", |
|
}, |
|
} |
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { |
|
"openbmb/cpm-ant-10b": 1024, |
|
} |
|
|
|
|
|
def load_vocab(vocab_file): |
|
"""Loads a vocabulary file into a dictionary.""" |
|
vocab = collections.OrderedDict() |
|
with open(vocab_file, "r", encoding="utf-8") as reader: |
|
tokens = reader.readlines() |
|
for index, token in enumerate(tokens): |
|
token = token.rstrip("\n") |
|
vocab[token] = index |
|
return vocab |
|
|
|
|
|
class WordpieceTokenizer(object): |
|
def __init__(self, vocab, unk_token="<unk>", max_input_chars_per_word=200): |
|
self.vocab = vocab |
|
self.unk_token = unk_token |
|
self.max_input_chars_per_word = max_input_chars_per_word |
|
|
|
def tokenize(self, token): |
|
chars = list(token) |
|
if len(chars) > self.max_input_chars_per_word: |
|
return [self.unk_token] |
|
|
|
start = 0 |
|
sub_tokens = [] |
|
while start < len(chars): |
|
end = len(chars) |
|
cur_substr = None |
|
while start < end: |
|
substr = "".join(chars[start:end]) |
|
if substr in self.vocab: |
|
cur_substr = substr |
|
break |
|
end -= 1 |
|
if cur_substr is None: |
|
sub_tokens.append(self.unk_token) |
|
start += 1 |
|
else: |
|
sub_tokens.append(cur_substr) |
|
start = end |
|
|
|
return sub_tokens |
|
|
|
|
|
class CpmAntTokenizer(PreTrainedTokenizer): |
|
""" |
|
Construct a CPMAnt tokenizer. Based on byte-level Byte-Pair-Encoding. |
|
|
|
Args: |
|
vocab_file (`str`): |
|
Path to the vocabulary file. |
|
bod_token (`str`, *optional*, defaults to `"<d>"`): |
|
The beginning of document token. |
|
eod_token (`str`, *optional*, defaults to `"</d>"`): |
|
The end of document token. |
|
bos_token (`str`, *optional*, defaults to `"<s>"`): |
|
The beginning of sequence token. |
|
eos_token (`str`, *optional*, defaults to `"</s>"`): |
|
The end of sequence token. |
|
pad_token (`str`, *optional*, defaults to `"<pad>"`): |
|
The token used for padding. |
|
unk_token (`str`, *optional*, defaults to `"<unk>"`): |
|
The unknown token. |
|
line_token (`str`, *optional*, defaults to `"</n>"`): |
|
The line token. |
|
space_token (`str`, *optional*, defaults to `"</_>"`): |
|
The space token. |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
model_input_names = ["input_ids", "attention_mask"] |
|
add_prefix_space = False |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
bod_token="<d>", |
|
eod_token="</d>", |
|
bos_token="<s>", |
|
eos_token="</s>", |
|
pad_token="<pad>", |
|
unk_token="<unk>", |
|
line_token="</n>", |
|
space_token="</_>", |
|
padding_side="left", |
|
**kwargs, |
|
): |
|
requires_backends(self, ["jieba"]) |
|
self.bod_token = bod_token |
|
self.eod_token = eod_token |
|
self.encoder = load_vocab(vocab_file) |
|
self.encoder[" "] = self.encoder[space_token] |
|
self.encoder["\n"] = self.encoder[line_token] |
|
|
|
del self.encoder[space_token] |
|
del self.encoder[line_token] |
|
|
|
self.encoder = collections.OrderedDict(sorted(self.encoder.items(), key=lambda x: x[1])) |
|
self.decoder = {v: k for k, v in self.encoder.items()} |
|
|
|
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=unk_token) |
|
|
|
super().__init__( |
|
bod_token=bod_token, |
|
eod_token=eod_token, |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
pad_token=pad_token, |
|
unk_token=unk_token, |
|
line_token=line_token, |
|
space_token=space_token, |
|
padding_side=padding_side, |
|
**kwargs, |
|
) |
|
|
|
@property |
|
def bod_token_id(self): |
|
return self.encoder[self.bod_token] |
|
|
|
@property |
|
def eod_token_id(self): |
|
return self.encoder[self.eod_token] |
|
|
|
@property |
|
def newline_id(self): |
|
return self.encoder["\n"] |
|
|
|
@property |
|
def vocab_size(self) -> int: |
|
return len(self.encoder) |
|
|
|
def get_vocab(self): |
|
return dict(self.encoder, **self.added_tokens_encoder) |
|
|
|
def _tokenize(self, text): |
|
"""Tokenize a string.""" |
|
output_tokens = [] |
|
for x in jieba.cut(text, cut_all=False): |
|
output_tokens.extend(self.wordpiece_tokenizer.tokenize(x)) |
|
return output_tokens |
|
|
|
def _decode(self, token_ids, **kwargs): |
|
"""Decode ids into a string.""" |
|
token_ids = [i for i in token_ids if i >= 0] |
|
token_ids = [ |
|
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id |
|
] |
|
return super()._decode(token_ids, **kwargs) |
|
|
|
def check(self, token): |
|
return token in self.encoder |
|
|
|
def convert_tokens_to_string(self, tokens: List[str]) -> str: |
|
return "".join(tokens) |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
return self.encoder.get(token, self.encoder.get(self.unk_token)) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
return self.decoder.get(index, self.unk_token) |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
if os.path.isdir(save_directory): |
|
vocab_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] |
|
) |
|
else: |
|
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory |
|
index = 0 |
|
if " " in self.encoder: |
|
self.encoder["</_>"] = self.encoder[" "] |
|
del self.encoder[" "] |
|
if "\n" in self.encoder: |
|
self.encoder["</n>"] = self.encoder["\n"] |
|
del self.encoder["\n"] |
|
self.encoder = collections.OrderedDict(sorted(self.encoder.items(), key=lambda x: x[1])) |
|
with open(vocab_file, "w", encoding="utf-8") as writer: |
|
for token, token_index in self.encoder.items(): |
|
if index != token_index: |
|
logger.warning( |
|
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." |
|
" Please check that the vocabulary is not corrupted!" |
|
) |
|
index = token_index |
|
writer.write(token + "\n") |
|
index += 1 |
|
return (vocab_file,) |
|
|
|
def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: List[int] = None) -> List[int]: |
|
""" |
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and |
|
adding special tokens. A CPMAnt sequence has the following format: |
|
|
|
- single sequence: `[BOS] Sequence`. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): The first tokenized sequence that special tokens will be added. |
|
token_ids_1 (`List[int]`): The optional second tokenized sequence that special tokens will be added. |
|
|
|
Returns: |
|
`List[int]`: The model input with special tokens. |
|
""" |
|
if token_ids_1 is None: |
|
return [self.bos_token_id] + token_ids_0 |
|
return [self.bos_token_id] + token_ids_0 + [self.bos_token_id] + token_ids_1 |
|
|
|
def get_special_tokens_mask( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False |
|
) -> List[int]: |
|
""" |
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer `prepare_for_model` method. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
|
|
Returns: |
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
|
|
if already_has_special_tokens: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True |
|
) |
|
|
|
if token_ids_1 is not None: |
|
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) |
|
return [1] + ([0] * len(token_ids_0)) |
|
|