|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" ConvBERT model configuration""" |
|
|
|
from collections import OrderedDict |
|
from typing import Mapping |
|
|
|
from ...configuration_utils import PretrainedConfig |
|
from ...onnx import OnnxConfig |
|
from ...utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", |
|
"YituTech/conv-bert-medium-small": ( |
|
"https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" |
|
), |
|
"YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", |
|
|
|
} |
|
|
|
|
|
class ConvBertConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`ConvBertModel`]. It is used to instantiate an |
|
ConvBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the ConvBERT |
|
[YituTech/conv-bert-base](https://huggingface.co/YituTech/conv-bert-base) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 30522): |
|
Vocabulary size of the ConvBERT model. Defines the number of different tokens that can be represented by |
|
the `inputs_ids` passed when calling [`ConvBertModel`] or [`TFConvBertModel`]. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` are supported. |
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention probabilities. |
|
max_position_embeddings (`int`, *optional*, defaults to 512): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
type_vocab_size (`int`, *optional*, defaults to 2): |
|
The vocabulary size of the `token_type_ids` passed when calling [`ConvBertModel`] or [`TFConvBertModel`]. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
head_ratio (`int`, *optional*, defaults to 2): |
|
Ratio gamma to reduce the number of attention heads. |
|
num_groups (`int`, *optional*, defaults to 1): |
|
The number of groups for grouped linear layers for ConvBert model |
|
conv_kernel_size (`int`, *optional*, defaults to 9): |
|
The size of the convolutional kernel. |
|
classifier_dropout (`float`, *optional*): |
|
The dropout ratio for the classification head. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import ConvBertConfig, ConvBertModel |
|
|
|
>>> # Initializing a ConvBERT convbert-base-uncased style configuration |
|
>>> configuration = ConvBertConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the convbert-base-uncased style configuration |
|
>>> model = ConvBertModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "convbert" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=30522, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=3072, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
type_vocab_size=2, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
pad_token_id=1, |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
embedding_size=768, |
|
head_ratio=2, |
|
conv_kernel_size=9, |
|
num_groups=1, |
|
classifier_dropout=None, |
|
**kwargs, |
|
): |
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
**kwargs, |
|
) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.embedding_size = embedding_size |
|
self.head_ratio = head_ratio |
|
self.conv_kernel_size = conv_kernel_size |
|
self.num_groups = num_groups |
|
self.classifier_dropout = classifier_dropout |
|
|
|
|
|
|
|
class ConvBertOnnxConfig(OnnxConfig): |
|
@property |
|
def inputs(self) -> Mapping[str, Mapping[int, str]]: |
|
if self.task == "multiple-choice": |
|
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} |
|
else: |
|
dynamic_axis = {0: "batch", 1: "sequence"} |
|
return OrderedDict( |
|
[ |
|
("input_ids", dynamic_axis), |
|
("attention_mask", dynamic_axis), |
|
("token_type_ids", dynamic_axis), |
|
] |
|
) |
|
|