|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes for OpenAI GPT.""" |
|
|
|
|
|
import json |
|
import re |
|
from typing import TYPE_CHECKING, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
|
|
from ...utils import is_tf_available, is_torch_available, logging |
|
|
|
|
|
if TYPE_CHECKING: |
|
if is_torch_available(): |
|
import torch |
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
from tokenizers import pre_tokenizers |
|
|
|
from ...tokenization_utils_base import BatchEncoding |
|
from ...tokenization_utils_fast import PreTrainedTokenizerFast |
|
from .tokenization_codegen import CodeGenTokenizer |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", |
|
}, |
|
"merges_file": { |
|
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", |
|
}, |
|
"tokenizer_file": { |
|
"Salesforce/codegen-350M-mono": ( |
|
"https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" |
|
), |
|
}, |
|
} |
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { |
|
"Salesforce/codegen-350M-mono": 2048, |
|
} |
|
|
|
|
|
class CodeGenTokenizerFast(PreTrainedTokenizerFast): |
|
""" |
|
Construct a "fast" CodeGen tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level |
|
Byte-Pair-Encoding. |
|
|
|
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will |
|
be encoded differently whether it is at the beginning of the sentence (without space) or not: |
|
|
|
```python |
|
>>> from transformers import CodeGenTokenizerFast |
|
|
|
>>> tokenizer = CodeGenTokenizerFast.from_pretrained("Salesforce/codegen-350M-mono") |
|
>>> tokenizer("Hello world")["input_ids"] |
|
[15496, 995] |
|
|
|
>>> tokenizer(" Hello world")["input_ids"] |
|
[18435, 995] |
|
``` |
|
|
|
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since |
|
the model was not pretrained this way, it might yield a decrease in performance. |
|
|
|
<Tip> |
|
|
|
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. |
|
|
|
</Tip> |
|
|
|
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should |
|
refer to this superclass for more information regarding those methods. |
|
|
|
Args: |
|
vocab_file (`str`): |
|
Path to the vocabulary file. |
|
merges_file (`str`): |
|
Path to the merges file. |
|
errors (`str`, *optional*, defaults to `"replace"`): |
|
Paradigm to follow when decoding bytes to UTF-8. See |
|
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. |
|
unk_token (`str`, *optional*, defaults to `<|endoftext|>`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
bos_token (`str`, *optional*, defaults to `<|endoftext|>`): |
|
The beginning of sequence token. |
|
eos_token (`str`, *optional*, defaults to `<|endoftext|>`): |
|
The end of sequence token. |
|
add_prefix_space (`bool`, *optional*, defaults to `False`): |
|
Whether or not to add an initial space to the input. This allows to treat the leading word just as any |
|
other word. (CodeGen tokenizer detect beginning of words by the preceding space). |
|
trim_offsets (`bool`, *optional*, defaults to `True`): |
|
Whether or not the post-processing step should trim offsets to avoid including whitespaces. |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
model_input_names = ["input_ids", "attention_mask"] |
|
slow_tokenizer_class = CodeGenTokenizer |
|
|
|
def __init__( |
|
self, |
|
vocab_file=None, |
|
merges_file=None, |
|
tokenizer_file=None, |
|
unk_token="<|endoftext|>", |
|
bos_token="<|endoftext|>", |
|
eos_token="<|endoftext|>", |
|
add_prefix_space=False, |
|
**kwargs, |
|
): |
|
super().__init__( |
|
vocab_file, |
|
merges_file, |
|
tokenizer_file=tokenizer_file, |
|
unk_token=unk_token, |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
add_prefix_space=add_prefix_space, |
|
**kwargs, |
|
) |
|
|
|
if kwargs.pop("add_bos_token", False): |
|
model_id = kwargs.pop("name_or_path", "") |
|
raise ValueError( |
|
"Currenty GPT2's fast tokenizer does NOT support adding a BOS token." |
|
"Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" |
|
f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" |
|
f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" |
|
"This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." |
|
" so that the fast tokenizer works correctly." |
|
) |
|
|
|
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) |
|
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: |
|
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) |
|
pre_tok_state["add_prefix_space"] = add_prefix_space |
|
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) |
|
|
|
self.add_prefix_space = add_prefix_space |
|
|
|
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: |
|
is_split_into_words = kwargs.get("is_split_into_words", False) |
|
assert self.add_prefix_space or not is_split_into_words, ( |
|
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " |
|
"to use it with pretokenized inputs." |
|
) |
|
|
|
return super()._batch_encode_plus(*args, **kwargs) |
|
|
|
def _encode_plus(self, *args, **kwargs) -> BatchEncoding: |
|
is_split_into_words = kwargs.get("is_split_into_words", False) |
|
|
|
assert self.add_prefix_space or not is_split_into_words, ( |
|
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " |
|
"to use it with pretokenized inputs." |
|
) |
|
|
|
return super()._encode_plus(*args, **kwargs) |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
files = self._tokenizer.model.save(save_directory, name=filename_prefix) |
|
return tuple(files) |
|
|
|
def decode( |
|
self, |
|
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], |
|
skip_special_tokens: bool = False, |
|
clean_up_tokenization_spaces: bool = None, |
|
truncate_before_pattern: Optional[List[str]] = None, |
|
**kwargs, |
|
) -> str: |
|
""" |
|
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special |
|
tokens and clean up tokenization spaces. |
|
|
|
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. |
|
|
|
Args: |
|
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): |
|
List of tokenized input ids. Can be obtained using the `__call__` method. |
|
skip_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not to remove special tokens in the decoding. |
|
clean_up_tokenization_spaces (`bool`, *optional*): |
|
Whether or not to clean up the tokenization spaces. If `None`, will default to |
|
`self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). |
|
truncate_before_pattern (`List[str]`, *optional*, defaults to `None`): |
|
A list of regular expression strings that will be used to truncate the returned string. This can be |
|
used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning |
|
of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`. |
|
kwargs (additional keyword arguments, *optional*): |
|
Will be passed to the underlying model specific decode method. |
|
|
|
Returns: |
|
`str`: The decoded sentence. |
|
""" |
|
|
|
decoded_text = super().decode( |
|
token_ids=token_ids, |
|
skip_special_tokens=skip_special_tokens, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
**kwargs, |
|
) |
|
|
|
if truncate_before_pattern is not None and len(truncate_before_pattern) > 0: |
|
decoded_text = self.truncate(decoded_text, truncate_before_pattern) |
|
|
|
return decoded_text |
|
|
|
def truncate(self, completion, truncate_before_pattern): |
|
def find_re(string, pattern, start_pos): |
|
m = pattern.search(string, start_pos) |
|
return m.start() if m else -1 |
|
|
|
terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern] |
|
|
|
prints = list(re.finditer("^print", completion, re.MULTILINE)) |
|
|
|
if len(prints) > 1: |
|
completion = completion[: prints[1].start()] |
|
|
|
defs = list(re.finditer("^def", completion, re.MULTILINE)) |
|
|
|
if len(defs) > 1: |
|
completion = completion[: defs[1].start()] |
|
|
|
start_pos = 0 |
|
|
|
terminals_pos = [ |
|
pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1 |
|
] |
|
|
|
if len(terminals_pos) > 0: |
|
return completion[: min(terminals_pos)] |
|
else: |
|
return completion |
|
|