|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch CLAP model.""" |
|
import collections |
|
import math |
|
from dataclasses import dataclass |
|
from typing import Any, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from ...activations import ACT2FN |
|
from ...modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
BaseModelOutputWithPooling, |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
) |
|
from ...modeling_utils import PreTrainedModel |
|
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, meshgrid, prune_linear_layer |
|
from ...utils import ( |
|
ModelOutput, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from .configuration_clap import ClapAudioConfig, ClapConfig, ClapTextConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "laion/clap-htsat-fused" |
|
|
|
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"laion/clap-htsat-fused", |
|
"laion/clap-htsat-unfused", |
|
|
|
] |
|
|
|
|
|
|
|
def interpolate(hidden_states, ratio): |
|
""" |
|
Interpolate data in time domain. This is used to compensate the resolution reduction in downsampling of a CNN. |
|
|
|
Args: |
|
hidden_states (`torch.FloatTensor` of shape (batch_size, time_length, classes_num)): |
|
Input hidden states |
|
ratio (`int`): |
|
The ratio of the length of the output to the length of the input. |
|
""" |
|
(batch_size, time_length, classes_num) = hidden_states.shape |
|
upsampled = hidden_states[:, :, None, :].repeat(1, 1, ratio, 1) |
|
upsampled = upsampled.reshape(batch_size, time_length * ratio, classes_num) |
|
return upsampled |
|
|
|
|
|
|
|
def window_partition(hidden_states, window_size): |
|
""" |
|
Returns the resized hidden states. The output shape should be `(batch_size * num_windows, window_size, window_size, |
|
num_channels)` |
|
|
|
Args: |
|
hidden_states (`torch.FloatTensor` of shape `(batch_size, height, width, num_channels)`): |
|
Input hidden states |
|
window_size (`int`): |
|
Window size |
|
""" |
|
batch_size, height, width, num_channels = hidden_states.shape |
|
|
|
hidden_states = hidden_states.view( |
|
batch_size, height // window_size, window_size, width // window_size, window_size, num_channels |
|
) |
|
windows = hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels) |
|
return windows |
|
|
|
|
|
|
|
def window_reverse(windows, window_size, height, width): |
|
""" |
|
Args: |
|
windows (`torch.FloatTensor` of shape `(num_windows * batch_size, window_size, window_size, num_channels)`): |
|
Input windows |
|
window_size (`int`): |
|
Window size |
|
height (`int`): |
|
Height of the resized audio |
|
width (`int`): |
|
Width of the resized audio |
|
""" |
|
batch_size = int(windows.shape[0] / (height * width / window_size / window_size)) |
|
|
|
hidden_states = windows.view(batch_size, height // window_size, width // window_size, window_size, window_size, -1) |
|
hidden_states = hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().view(batch_size, height, width, -1) |
|
return hidden_states |
|
|
|
|
|
|
|
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): |
|
""" |
|
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols |
|
are ignored. This is modified from fairseq's `utils.make_positions`. |
|
|
|
Args: |
|
x: torch.Tensor x: |
|
|
|
Returns: torch.Tensor |
|
""" |
|
|
|
mask = input_ids.ne(padding_idx).int() |
|
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask |
|
return incremental_indices.long() + padding_idx |
|
|
|
|
|
|
|
|
|
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: |
|
labels = torch.arange(len(logits), device=logits.device) |
|
return nn.functional.cross_entropy(logits, labels) |
|
|
|
|
|
@dataclass |
|
|
|
class ClapTextModelOutput(ModelOutput): |
|
""" |
|
Base class for text model's outputs that also contains a pooling of the last hidden states. |
|
|
|
Args: |
|
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): |
|
The text embeddings obtained by applying the projection layer to the pooler_output. |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
text_embeds: Optional[torch.FloatTensor] = None |
|
last_hidden_state: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class ClapAudioModelOutput(ModelOutput): |
|
""" |
|
ClapAudio model output to mimic the output of the original implementation. |
|
|
|
Args: |
|
audio_embeds (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): |
|
The Audio embeddings obtained by applying the projection layer to the pooler_output. |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
""" |
|
|
|
audio_embeds: Optional[torch.FloatTensor] = None |
|
last_hidden_state: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
|
|
class ClapOutput(ModelOutput): |
|
""" |
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): |
|
Contrastive loss for audio-text similarity. |
|
logits_per_audio:(`torch.FloatTensor` of shape `(audio_batch_size, text_batch_size)`): |
|
The scaled dot product scores between `audio_embeds` and `text_embeds`. This represents the audio-text |
|
similarity scores. |
|
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, audio_batch_size)`): |
|
The scaled dot product scores between `text_embeds` and `audio_embeds`. This represents the text-audio |
|
similarity scores. |
|
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): |
|
The text embeddings obtained by applying the projection layer to the pooled output of [`ClapTextModel`]. |
|
audio_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): |
|
The audio embeddings obtained by applying the projection layer to the pooled output of [`ClapAudioModel`]. |
|
text_model_output(`BaseModelOutputWithPooling`): |
|
The output of the [`ClapTextModel`]. |
|
audio_model_output(`BaseModelOutputWithPooling`): |
|
The output of the [`ClapAudioModel`]. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits_per_audio: torch.FloatTensor = None |
|
logits_per_text: torch.FloatTensor = None |
|
text_embeds: torch.FloatTensor = None |
|
audio_embeds: torch.FloatTensor = None |
|
text_model_output: BaseModelOutputWithPooling = None |
|
audio_model_output: BaseModelOutputWithPooling = None |
|
|
|
def to_tuple(self) -> Tuple[Any]: |
|
return tuple( |
|
self[k] if k not in ["text_model_output", "audio_model_output"] else getattr(self, k).to_tuple() |
|
for k in self.keys() |
|
) |
|
|
|
|
|
|
|
class ClapDropPath(nn.Module): |
|
""" |
|
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is a slightly |
|
refactored version of the `SwinDropPath` implementation. |
|
""" |
|
|
|
def __init__(self, drop_prob=None): |
|
super().__init__() |
|
self.drop_prob = drop_prob |
|
|
|
def forward(self, hidden_states): |
|
if self.drop_prob == 0.0 or not self.training: |
|
return hidden_states |
|
|
|
keep_prob = 1 - self.drop_prob |
|
|
|
shape = (hidden_states.shape[0],) + (1,) * (hidden_states.ndim - 1) |
|
|
|
random_tensor = keep_prob + torch.rand(shape, dtype=hidden_states.dtype, device=hidden_states.device) |
|
random_tensor.floor_() |
|
output = hidden_states.div(keep_prob) * random_tensor |
|
return output |
|
|
|
|
|
|
|
class ClapAudioAFFBlock(nn.Module): |
|
r""" |
|
ATTENTIONAL FEATURE FUSION Block from CLAP, since in CLAP we are always in 2D mode, it is not needed to implement |
|
the 1D version. |
|
""" |
|
|
|
def __init__(self, config: ClapAudioConfig): |
|
super().__init__() |
|
channels = config.patch_embeds_hidden_size |
|
downsize_ratio = config.aff_block_r |
|
inter_channels = int(channels // downsize_ratio) |
|
|
|
self.local_att = nn.Sequential( |
|
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), |
|
nn.BatchNorm2d(inter_channels), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), |
|
nn.BatchNorm2d(channels), |
|
) |
|
self.global_att = nn.Sequential( |
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), |
|
nn.BatchNorm2d(inter_channels), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), |
|
nn.BatchNorm2d(channels), |
|
) |
|
|
|
self.sigmoid = nn.Sigmoid() |
|
|
|
def forward(self, hidden_states, residual): |
|
attention_input = hidden_states + residual |
|
|
|
fused_layer_output = self.local_att(attention_input) + self.global_att(attention_input) |
|
fused_layer_output = self.sigmoid(fused_layer_output) |
|
|
|
output = 2 * hidden_states * fused_layer_output + 2 * residual * (1 - fused_layer_output) |
|
return output |
|
|
|
|
|
class ClapAudioPatchEmbed(nn.Module): |
|
""" |
|
This module converts the hidden states reshaped as an image to patch embeddings ready to be passed to the |
|
Transformer block. |
|
""" |
|
|
|
def __init__(self, config: ClapAudioConfig): |
|
super().__init__() |
|
img_size = (config.spec_size, config.spec_size) if isinstance(config.spec_size, int) else config.spec_size |
|
patch_size = ( |
|
(config.patch_size, config.patch_size) if isinstance(config.patch_size, int) else config.patch_size |
|
) |
|
patch_stride = ( |
|
(config.patch_stride, config.patch_stride) if isinstance(config.patch_stride, int) else config.patch_stride |
|
) |
|
|
|
self.img_size = img_size |
|
self.patch_stride = patch_stride |
|
|
|
self.grid_size = (img_size[0] // patch_stride[0], img_size[1] // patch_stride[1]) |
|
self.num_patches = self.grid_size[0] * self.grid_size[1] |
|
|
|
self.flatten = config.flatten_patch_embeds |
|
self.enable_fusion = config.enable_fusion |
|
|
|
padding = ((patch_size[0] - patch_stride[0]) // 2, (patch_size[1] - patch_stride[1]) // 2) |
|
|
|
scale_factor = 4 if (self.enable_fusion) and (config.fusion_type == "channel_map") else 1 |
|
|
|
self.proj = nn.Conv2d( |
|
config.patch_embed_input_channels * scale_factor, |
|
config.patch_embeds_hidden_size, |
|
kernel_size=patch_size, |
|
stride=patch_stride, |
|
padding=padding, |
|
) |
|
|
|
self.norm = nn.LayerNorm(config.patch_embeds_hidden_size) if config.enable_patch_layer_norm else nn.Identity() |
|
if self.enable_fusion: |
|
self.fusion_model = ClapAudioAFFBlock(config) |
|
self.mel_conv2d = nn.Conv2d( |
|
config.patch_embed_input_channels, |
|
config.patch_embeds_hidden_size, |
|
kernel_size=(patch_size[0], patch_size[1] * 3), |
|
stride=(patch_stride[0], patch_stride[1] * 3), |
|
padding=padding, |
|
) |
|
|
|
def forward(self, hidden_states, is_longer_idx=None): |
|
if self.enable_fusion: |
|
|
|
global_hidden_states = hidden_states[:, 0:1, :, :] |
|
|
|
|
|
batch_size, num_channels, height, width = global_hidden_states.shape |
|
|
|
if height != self.img_size[0] or width != self.img_size[1]: |
|
raise ValueError( |
|
f"Input audio size ({height}*{width}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." |
|
) |
|
|
|
global_hidden_states = self.proj(global_hidden_states) |
|
output_width = global_hidden_states.size(-1) |
|
if len(is_longer_idx) > 0: |
|
|
|
local_hidden_states = hidden_states[is_longer_idx, 1:, :, :].contiguous() |
|
batch_size, num_channels, height, width = local_hidden_states.shape |
|
local_hidden_states = local_hidden_states.view(batch_size * num_channels, 1, height, width) |
|
|
|
local_hidden_states = self.mel_conv2d(local_hidden_states) |
|
|
|
_, features, height, width = local_hidden_states.shape |
|
local_hidden_states = local_hidden_states.view(batch_size, num_channels, features, height, width) |
|
local_hidden_states = local_hidden_states.permute((0, 2, 3, 1, 4)).contiguous().flatten(3) |
|
|
|
local_width = local_hidden_states.size(-1) |
|
local_hidden_states = torch.nn.functional.pad( |
|
local_hidden_states, (0, output_width - local_width), "constant", 0 |
|
) |
|
|
|
global_hidden_states[is_longer_idx] = self.fusion_model( |
|
global_hidden_states[is_longer_idx], local_hidden_states |
|
) |
|
hidden_states = global_hidden_states |
|
else: |
|
_, _, height, width = hidden_states.shape |
|
if height != self.img_size[0] or width != self.img_size[1]: |
|
raise ValueError( |
|
f"Input audio size ({height}*{width}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." |
|
) |
|
hidden_states = self.proj(hidden_states) |
|
|
|
if self.flatten: |
|
hidden_states = hidden_states.flatten(2).transpose(1, 2) |
|
hidden_states = self.norm(hidden_states) |
|
return hidden_states |
|
|
|
|
|
|
|
class ClapAudioSelfAttention(nn.Module): |
|
def __init__(self, config, dim, num_heads, window_size): |
|
super().__init__() |
|
if dim % num_heads != 0: |
|
raise ValueError( |
|
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})" |
|
) |
|
|
|
self.num_attention_heads = num_heads |
|
self.attention_head_size = int(dim / num_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
self.window_size = ( |
|
window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size) |
|
) |
|
|
|
self.relative_position_bias_table = nn.Parameter( |
|
torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads) |
|
) |
|
|
|
|
|
coords_h = torch.arange(self.window_size[0]) |
|
coords_w = torch.arange(self.window_size[1]) |
|
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += self.window_size[0] - 1 |
|
relative_coords[:, :, 1] += self.window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 |
|
relative_position_index = relative_coords.sum(-1) |
|
self.register_buffer("relative_position_index", relative_position_index) |
|
|
|
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) |
|
self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) |
|
self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
|
|
def transpose_for_scores(self, x): |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
batch_size, dim, num_channels = hidden_states.shape |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
|
|
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)] |
|
relative_position_bias = relative_position_bias.view( |
|
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 |
|
) |
|
|
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
attention_scores = attention_scores + relative_position_bias.unsqueeze(0) |
|
|
|
if attention_mask is not None: |
|
|
|
mask_shape = attention_mask.shape[0] |
|
attention_scores = attention_scores.view( |
|
batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim |
|
) |
|
attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0) |
|
attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim) |
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(new_context_layer_shape) |
|
|
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
|
|
return outputs |
|
|
|
|
|
|
|
class ClapAudioSelfOutput(nn.Module): |
|
def __init__(self, config, dim): |
|
super().__init__() |
|
self.dense = nn.Linear(dim, dim) |
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
class ClapAudioAttention(nn.Module): |
|
def __init__(self, config, dim, num_heads, window_size): |
|
super().__init__() |
|
self.self = ClapAudioSelfAttention(config, dim, num_heads, window_size) |
|
self.output = ClapAudioSelfOutput(config, dim) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads |
|
) |
|
|
|
|
|
self.self.query = prune_linear_layer(self.self.query, index) |
|
self.self.key = prune_linear_layer(self.self.key, index) |
|
self.self.value = prune_linear_layer(self.self.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) |
|
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions) |
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
outputs = (attention_output,) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
|
|
class ClapAudioIntermediate(nn.Module): |
|
def __init__(self, config, dim): |
|
super().__init__() |
|
self.dense = nn.Linear(dim, int(config.mlp_ratio * dim)) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
return hidden_states |
|
|
|
|
|
|
|
class ClapAudioOutput(nn.Module): |
|
def __init__(self, config, dim): |
|
super().__init__() |
|
self.dense = nn.Linear(int(config.mlp_ratio * dim), dim) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
return hidden_states |
|
|
|
|
|
|
|
class ClapAudioLayer(nn.Module): |
|
def __init__(self, config, dim, input_resolution, num_heads, shift_size=0): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.shift_size = shift_size |
|
self.window_size = config.window_size |
|
self.input_resolution = input_resolution |
|
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps) |
|
self.attention = ClapAudioAttention(config, dim, num_heads, window_size=self.window_size) |
|
self.drop_path = ClapDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity() |
|
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps) |
|
self.intermediate = ClapAudioIntermediate(config, dim) |
|
self.output = ClapAudioOutput(config, dim) |
|
|
|
def set_shift_and_window_size(self, input_resolution): |
|
if min(input_resolution) <= self.window_size: |
|
|
|
self.shift_size = 0 |
|
self.window_size = min(input_resolution) |
|
|
|
def get_attn_mask(self, height, width, dtype): |
|
if self.shift_size > 0: |
|
|
|
img_mask = torch.zeros((1, height, width, 1), dtype=dtype) |
|
height_slices = ( |
|
slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None), |
|
) |
|
width_slices = ( |
|
slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None), |
|
) |
|
count = 0 |
|
for height_slice in height_slices: |
|
for width_slice in width_slices: |
|
img_mask[:, height_slice, width_slice, :] = count |
|
count += 1 |
|
|
|
mask_windows = window_partition(img_mask, self.window_size) |
|
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) |
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) |
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) |
|
else: |
|
attn_mask = None |
|
return attn_mask |
|
|
|
def maybe_pad(self, hidden_states, height, width): |
|
pad_right = (self.window_size - width % self.window_size) % self.window_size |
|
pad_bottom = (self.window_size - height % self.window_size) % self.window_size |
|
pad_values = (0, 0, 0, pad_right, 0, pad_bottom) |
|
hidden_states = nn.functional.pad(hidden_states, pad_values) |
|
return hidden_states, pad_values |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
input_dimensions: Tuple[int, int], |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
always_partition: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
if not always_partition: |
|
self.set_shift_and_window_size(input_dimensions) |
|
else: |
|
pass |
|
height, width = input_dimensions |
|
batch_size, _, channels = hidden_states.size() |
|
shortcut = hidden_states |
|
|
|
hidden_states = self.layernorm_before(hidden_states) |
|
|
|
hidden_states = hidden_states.view(batch_size, height, width, channels) |
|
|
|
|
|
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width) |
|
|
|
_, height_pad, width_pad, _ = hidden_states.shape |
|
|
|
if self.shift_size > 0: |
|
shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) |
|
else: |
|
shifted_hidden_states = hidden_states |
|
|
|
|
|
hidden_states_windows = window_partition(shifted_hidden_states, self.window_size) |
|
hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels) |
|
attn_mask = self.get_attn_mask(height_pad, width_pad, dtype=hidden_states.dtype) |
|
if attn_mask is not None: |
|
attn_mask = attn_mask.to(hidden_states_windows.device) |
|
|
|
attention_outputs = self.attention( |
|
hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions |
|
) |
|
|
|
attention_output = attention_outputs[0] |
|
|
|
attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels) |
|
shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad) |
|
|
|
|
|
if self.shift_size > 0: |
|
attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) |
|
else: |
|
attention_windows = shifted_windows |
|
|
|
was_padded = pad_values[3] > 0 or pad_values[5] > 0 |
|
if was_padded: |
|
attention_windows = attention_windows[:, :height, :width, :].contiguous() |
|
|
|
attention_windows = attention_windows.view(batch_size, height * width, channels) |
|
|
|
hidden_states = shortcut + self.drop_path(attention_windows) |
|
|
|
layer_output = self.layernorm_after(hidden_states) |
|
layer_output = self.intermediate(layer_output) |
|
layer_output = hidden_states + self.output(layer_output) |
|
|
|
layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,) |
|
return layer_outputs |
|
|
|
|
|
|
|
class ClapAudioStage(nn.Module): |
|
def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample): |
|
super().__init__() |
|
self.config = config |
|
self.dim = dim |
|
self.blocks = nn.ModuleList( |
|
[ |
|
ClapAudioLayer( |
|
config=config, |
|
dim=dim, |
|
input_resolution=input_resolution, |
|
num_heads=num_heads, |
|
shift_size=0 if (i % 2 == 0) else config.window_size // 2, |
|
) |
|
for i in range(depth) |
|
] |
|
) |
|
|
|
|
|
if downsample is not None: |
|
self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm) |
|
else: |
|
self.downsample = None |
|
|
|
self.pointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
input_dimensions: Tuple[int, int], |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
always_partition: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
height, width = input_dimensions |
|
for i, layer_module in enumerate(self.blocks): |
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
|
|
layer_outputs = layer_module( |
|
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
hidden_states_before_downsampling = hidden_states |
|
if self.downsample is not None: |
|
height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2 |
|
output_dimensions = (height, width, height_downsampled, width_downsampled) |
|
hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions) |
|
else: |
|
output_dimensions = (height, width, height, width) |
|
|
|
stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions) |
|
|
|
if output_attentions: |
|
stage_outputs += layer_outputs[1:] |
|
return stage_outputs |
|
|
|
|
|
|
|
class ClapAudioPatchMerging(nn.Module): |
|
""" |
|
Patch Merging Layer. |
|
|
|
Args: |
|
input_resolution (`Tuple[int]`): |
|
Resolution of input feature. |
|
dim (`int`): |
|
Number of input channels. |
|
norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`): |
|
Normalization layer class. |
|
""" |
|
|
|
def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None: |
|
super().__init__() |
|
self.input_resolution = input_resolution |
|
self.dim = dim |
|
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) |
|
self.norm = norm_layer(4 * dim) |
|
|
|
def maybe_pad(self, input_feature, height, width): |
|
should_pad = (height % 2 == 1) or (width % 2 == 1) |
|
if should_pad: |
|
pad_values = (0, 0, 0, width % 2, 0, height % 2) |
|
input_feature = nn.functional.pad(input_feature, pad_values) |
|
|
|
return input_feature |
|
|
|
def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor: |
|
height, width = input_dimensions |
|
|
|
batch_size, dim, num_channels = input_feature.shape |
|
|
|
input_feature = input_feature.view(batch_size, height, width, num_channels) |
|
|
|
input_feature = self.maybe_pad(input_feature, height, width) |
|
|
|
input_feature_0 = input_feature[:, 0::2, 0::2, :] |
|
|
|
input_feature_1 = input_feature[:, 1::2, 0::2, :] |
|
|
|
input_feature_2 = input_feature[:, 0::2, 1::2, :] |
|
|
|
input_feature_3 = input_feature[:, 1::2, 1::2, :] |
|
|
|
input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1) |
|
input_feature = input_feature.view(batch_size, -1, 4 * num_channels) |
|
|
|
input_feature = self.norm(input_feature) |
|
input_feature = self.reduction(input_feature) |
|
|
|
return input_feature |
|
|
|
|
|
class ClapAudioEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.num_layers = len(config.depths) |
|
|
|
self.config = config |
|
self.patch_embed = ClapAudioPatchEmbed(config) |
|
self.enable_fusion = config.enable_fusion |
|
self.patch_stride = self.patch_embed.patch_stride |
|
self.spec_size = config.spec_size |
|
self.freq_ratio = config.spec_size // config.num_mel_bins |
|
|
|
self.num_features = int(config.patch_embeds_hidden_size * 2 ** (self.num_layers - 1)) |
|
|
|
drop_path_rate = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] |
|
|
|
grid_size = self.patch_embed.grid_size |
|
self.input_resolutions = [(grid_size[0] // (2**i), grid_size[1] // (2**i)) for i in range(self.num_layers)] |
|
|
|
self.layers = nn.ModuleList( |
|
[ |
|
ClapAudioStage( |
|
config=config, |
|
dim=int(config.patch_embeds_hidden_size * 2**i_layer), |
|
input_resolution=self.input_resolutions[i_layer], |
|
depth=config.depths[i_layer], |
|
num_heads=config.num_attention_heads[i_layer], |
|
drop_path=drop_path_rate[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])], |
|
downsample=ClapAudioPatchMerging if (i_layer < self.num_layers - 1) else None, |
|
) |
|
for i_layer in range(self.num_layers) |
|
] |
|
) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.batch_norm = nn.BatchNorm2d(config.num_mel_bins) |
|
self.norm = nn.LayerNorm(self.num_features) |
|
self.depths = config.depths |
|
self.avgpool = nn.AdaptiveAvgPool1d(1) |
|
|
|
def reshape_mel2img(self, normalized_input_features): |
|
""" |
|
The input is 4 normalized log mel spectrograms. It is reshape to the common shape of images. Each channel |
|
should represent 1 of the 4 crops of the spectrogram. For more details, refer to the [`ClapFeatureExtractor`]. |
|
""" |
|
_, _, time_length, freq_length = normalized_input_features.shape |
|
|
|
spec_width = int(self.spec_size * self.freq_ratio) |
|
spec_heigth = self.spec_size // self.freq_ratio |
|
|
|
if time_length > spec_width or freq_length > spec_heigth: |
|
raise ValueError("the wav size should be less than or equal to the swin input size") |
|
|
|
|
|
if time_length < spec_width: |
|
normalized_input_features = nn.functional.interpolate( |
|
normalized_input_features, (spec_width, freq_length), mode="bicubic", align_corners=True |
|
) |
|
if freq_length < spec_heigth: |
|
normalized_input_features = nn.functional.interpolate( |
|
normalized_input_features, (time_length, spec_heigth), mode="bicubic", align_corners=True |
|
) |
|
|
|
batch, channels, time, freq = normalized_input_features.shape |
|
|
|
|
|
normalized_input_features = normalized_input_features.reshape( |
|
batch, channels * self.freq_ratio, time // self.freq_ratio, freq |
|
) |
|
normalized_input_features = normalized_input_features.permute(0, 1, 3, 2).contiguous() |
|
normalized_input_features = normalized_input_features.reshape( |
|
batch, channels, freq * self.freq_ratio, time // self.freq_ratio |
|
) |
|
|
|
return normalized_input_features |
|
|
|
def forward( |
|
self, |
|
input_features, |
|
is_longer: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
output_hidden_states: Optional[bool] = False, |
|
output_hidden_states_before_downsampling: Optional[bool] = False, |
|
always_partition: Optional[bool] = False, |
|
return_dict: Optional[bool] = True, |
|
) -> Union[Tuple, ClapAudioModelOutput]: |
|
input_features = input_features.transpose(1, 3) |
|
normalized_input_features = self.batch_norm(input_features) |
|
normalized_input_features = normalized_input_features.transpose(1, 3) |
|
|
|
is_longer_list_idx = None |
|
if self.enable_fusion: |
|
is_longer_list = is_longer.to(input_features.device) |
|
is_longer_list_idx = torch.where(is_longer_list == 1)[0] |
|
|
|
hidden_states = self.reshape_mel2img(normalized_input_features) |
|
|
|
frames_num = hidden_states.shape[2] |
|
|
|
hidden_states = self.patch_embed(hidden_states, is_longer_list_idx) |
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_reshaped_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
|
|
input_dimensions = self.input_resolutions[0] |
|
|
|
if output_hidden_states: |
|
batch_size, _, hidden_size = hidden_states.shape |
|
|
|
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) |
|
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) |
|
all_hidden_states += (hidden_states,) |
|
all_reshaped_hidden_states += (reshaped_hidden_state,) |
|
|
|
for i, layer_module in enumerate(self.layers): |
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
|
|
input_dimensions = self.input_resolutions[i] |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), hidden_states, input_dimensions, layer_head_mask |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
hidden_states_before_downsampling = layer_outputs[1] |
|
output_dimensions = layer_outputs[2] |
|
|
|
input_dimensions = (output_dimensions[-2], output_dimensions[-1]) |
|
|
|
if output_hidden_states and output_hidden_states_before_downsampling: |
|
batch_size, _, hidden_size = hidden_states_before_downsampling.shape |
|
|
|
|
|
reshaped_hidden_state = hidden_states_before_downsampling.view( |
|
batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size |
|
) |
|
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) |
|
all_hidden_states += (hidden_states_before_downsampling,) |
|
all_reshaped_hidden_states += (reshaped_hidden_state,) |
|
elif output_hidden_states and not output_hidden_states_before_downsampling: |
|
batch_size, _, hidden_size = hidden_states.shape |
|
|
|
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) |
|
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) |
|
all_hidden_states += (hidden_states,) |
|
all_reshaped_hidden_states += (reshaped_hidden_state,) |
|
|
|
if output_attentions: |
|
all_self_attentions += layer_outputs[3:] |
|
|
|
last_hidden_state = self.norm(hidden_states) |
|
|
|
batch_size, _, n_channels = last_hidden_state.shape |
|
|
|
freq_shape = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0] |
|
temporal_shape = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1] |
|
|
|
last_hidden_state = ( |
|
last_hidden_state.permute(0, 2, 1).contiguous().reshape(batch_size, n_channels, freq_shape, temporal_shape) |
|
) |
|
|
|
batch_size, n_channels, n_frequencies, n_temp = last_hidden_state.shape |
|
|
|
c_freq_bin = n_frequencies // self.freq_ratio |
|
last_hidden_state = last_hidden_state.reshape( |
|
batch_size, n_channels, n_frequencies // c_freq_bin, c_freq_bin, n_temp |
|
) |
|
last_hidden_state = ( |
|
last_hidden_state.permute(0, 1, 3, 2, 4).contiguous().reshape(batch_size, n_channels, c_freq_bin, -1) |
|
) |
|
latent_output = self.avgpool(torch.flatten(last_hidden_state, 2)) |
|
latent_output = torch.flatten(latent_output, 1) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
last_hidden_state, |
|
latent_output, |
|
all_reshaped_hidden_states, |
|
all_self_attentions, |
|
] |
|
if v is not None |
|
) |
|
|
|
return BaseModelOutputWithPooling( |
|
last_hidden_state=last_hidden_state, |
|
pooler_output=latent_output, |
|
hidden_states=all_reshaped_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
CLAP_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`ClapConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
CLAP_TEXT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
CLAP_AUDIO_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_features (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Input audio features. This should be returnes by the [`ClapFeatureExtractor`] class that you can also |
|
retrieve from [`AutoFeatureExtractor`]. See [`ClapFeatureExtractor.__call__`] for details. |
|
is_longer (`torch.FloatTensor`, of shape `(batch_size, 1)`, *optional*): |
|
Whether the audio clip is longer than `max_length`. If `True`, a feature fusion will be enabled to enhance |
|
the features. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
CLAP_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
input_features (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Input audio features. This should be returnes by the [`ClapFeatureExtractor`] class that you can also |
|
retrieve from [`AutoFeatureExtractor`]. See [`ClapFeatureExtractor.__call__`] for details. |
|
return_loss (`bool`, *optional*): |
|
Whether or not to return the contrastive loss. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
class ClapProjectionLayer(nn.Module): |
|
def __init__(self, config: Union[ClapAudioConfig, ClapTextConfig]): |
|
super().__init__() |
|
self.config = config |
|
hidden_size = config.hidden_size |
|
projection_dim = config.projection_dim |
|
|
|
self.linear1 = nn.Linear(hidden_size, projection_dim) |
|
self.activation = ACT2FN[config.projection_hidden_act] |
|
self.linear2 = nn.Linear(projection_dim, projection_dim) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.linear1(hidden_states) |
|
hidden_states = self.activation(hidden_states) |
|
hidden_states = self.linear2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
|
|
class ClapTextEmbeddings(nn.Module): |
|
""" |
|
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. |
|
""" |
|
|
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) |
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) |
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) |
|
|
|
|
|
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") |
|
self.register_buffer( |
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=True |
|
) |
|
self.register_buffer( |
|
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=True |
|
) |
|
|
|
|
|
self.padding_idx = config.pad_token_id |
|
self.position_embeddings = nn.Embedding( |
|
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx |
|
) |
|
|
|
def forward( |
|
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 |
|
): |
|
if position_ids is None: |
|
if input_ids is not None: |
|
|
|
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) |
|
else: |
|
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) |
|
|
|
if input_ids is not None: |
|
input_shape = input_ids.size() |
|
else: |
|
input_shape = inputs_embeds.size()[:-1] |
|
|
|
seq_length = input_shape[1] |
|
|
|
|
|
|
|
|
|
if token_type_ids is None: |
|
if hasattr(self, "token_type_ids"): |
|
buffered_token_type_ids = self.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
|
|
embeddings = inputs_embeds + token_type_embeddings |
|
if self.position_embedding_type == "absolute": |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings += position_embeddings |
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
def create_position_ids_from_inputs_embeds(self, inputs_embeds): |
|
""" |
|
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. |
|
|
|
Args: |
|
inputs_embeds: torch.Tensor |
|
|
|
Returns: torch.Tensor |
|
""" |
|
input_shape = inputs_embeds.size()[:-1] |
|
sequence_length = input_shape[1] |
|
|
|
position_ids = torch.arange( |
|
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device |
|
) |
|
return position_ids.unsqueeze(0).expand(input_shape) |
|
|
|
|
|
|
|
class ClapTextSelfAttention(nn.Module): |
|
def __init__(self, config, position_embedding_type=None): |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): |
|
raise ValueError( |
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " |
|
f"heads ({config.num_attention_heads})" |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
self.position_embedding_type = position_embedding_type or getattr( |
|
config, "position_embedding_type", "absolute" |
|
) |
|
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) |
|
|
|
self.is_decoder = config.is_decoder |
|
|
|
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
|
|
|
|
|
|
is_cross_attention = encoder_hidden_states is not None |
|
|
|
if is_cross_attention and past_key_value is not None: |
|
|
|
key_layer = past_key_value[0] |
|
value_layer = past_key_value[1] |
|
attention_mask = encoder_attention_mask |
|
elif is_cross_attention: |
|
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) |
|
attention_mask = encoder_attention_mask |
|
elif past_key_value is not None: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) |
|
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) |
|
else: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
use_cache = past_key_value is not None |
|
if self.is_decoder: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_key_value = (key_layer, value_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": |
|
query_length, key_length = query_layer.shape[2], key_layer.shape[2] |
|
if use_cache: |
|
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( |
|
-1, 1 |
|
) |
|
else: |
|
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) |
|
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) |
|
distance = position_ids_l - position_ids_r |
|
|
|
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) |
|
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) |
|
|
|
if self.position_embedding_type == "relative_key": |
|
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) |
|
attention_scores = attention_scores + relative_position_scores |
|
elif self.position_embedding_type == "relative_key_query": |
|
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) |
|
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) |
|
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key |
|
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
if attention_mask is not None: |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(new_context_layer_shape) |
|
|
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
|
|
if self.is_decoder: |
|
outputs = outputs + (past_key_value,) |
|
return outputs |
|
|
|
|
|
|
|
class ClapTextSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
|
|
class ClapTextAttention(nn.Module): |
|
def __init__(self, config, position_embedding_type=None): |
|
super().__init__() |
|
self.self = ClapTextSelfAttention(config, position_embedding_type=position_embedding_type) |
|
self.output = ClapTextSelfOutput(config) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads |
|
) |
|
|
|
|
|
self.self.query = prune_linear_layer(self.self.query, index) |
|
self.self.key = prune_linear_layer(self.self.key, index) |
|
self.self.value = prune_linear_layer(self.self.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) |
|
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
self_outputs = self.self( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
outputs = (attention_output,) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
|
|
class ClapTextIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
return hidden_states |
|
|
|
|
|
|
|
class ClapTextOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
|
|
class ClapTextLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = ClapTextAttention(config) |
|
self.is_decoder = config.is_decoder |
|
self.add_cross_attention = config.add_cross_attention |
|
if self.add_cross_attention: |
|
if not self.is_decoder: |
|
raise ValueError(f"{self} should be used as a decoder model if cross attention is added") |
|
self.crossattention = ClapTextAttention(config, position_embedding_type="absolute") |
|
self.intermediate = ClapTextIntermediate(config) |
|
self.output = ClapTextOutput(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
|
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None |
|
self_attention_outputs = self.attention( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
output_attentions=output_attentions, |
|
past_key_value=self_attn_past_key_value, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
|
|
|
|
if self.is_decoder: |
|
outputs = self_attention_outputs[1:-1] |
|
present_key_value = self_attention_outputs[-1] |
|
else: |
|
outputs = self_attention_outputs[1:] |
|
|
|
cross_attn_present_key_value = None |
|
if self.is_decoder and encoder_hidden_states is not None: |
|
if not hasattr(self, "crossattention"): |
|
raise ValueError( |
|
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" |
|
" by setting `config.add_cross_attention=True`" |
|
) |
|
|
|
|
|
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None |
|
cross_attention_outputs = self.crossattention( |
|
attention_output, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
cross_attn_past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = cross_attention_outputs[0] |
|
outputs = outputs + cross_attention_outputs[1:-1] |
|
|
|
|
|
cross_attn_present_key_value = cross_attention_outputs[-1] |
|
present_key_value = present_key_value + cross_attn_present_key_value |
|
|
|
layer_output = apply_chunking_to_forward( |
|
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output |
|
) |
|
outputs = (layer_output,) + outputs |
|
|
|
|
|
if self.is_decoder: |
|
outputs = outputs + (present_key_value,) |
|
|
|
return outputs |
|
|
|
def feed_forward_chunk(self, attention_output): |
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
|
|
class ClapTextEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList([ClapTextLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = False, |
|
output_hidden_states: Optional[bool] = False, |
|
return_dict: Optional[bool] = True, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
next_decoder_cache = () if use_cache else None |
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
past_key_value = past_key_values[i] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, past_key_value, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[-1],) |
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
if self.config.add_cross_attention: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
next_decoder_cache, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_decoder_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
|
|
class ClapTextPooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
class ClapPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = ClapConfig |
|
base_model_prefix = "clap" |
|
supports_gradient_checkpointing = False |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
factor = self.config.initializer_factor |
|
|
|
if isinstance(module, ClapTextEmbeddings): |
|
module.position_embeddings.weight.data.normal_(mean=0.0, std=factor * 0.02) |
|
module.token_type_embeddings.weight.data.normal_(mean=0.0, std=factor * 0.02) |
|
elif isinstance(module, ClapModel): |
|
nn.init.normal_(module.logit_scale_a, std=factor * 0.02) |
|
nn.init.normal_(module.logit_scale_t, std=factor * 0.02) |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=factor * 0.02) |
|
|
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
elif isinstance(module, (nn.Conv2d, nn.Linear)): |
|
in_proj_std = (self.config.hidden_size**-0.5) * ((2 * self.config.num_hidden_layers) ** -0.5) * factor |
|
nn.init.normal_(module.weight, std=in_proj_std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, ClapTextEncoder): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
class ClapAudioModel(ClapPreTrainedModel): |
|
config_class = ClapAudioConfig |
|
main_input_name = "input_features" |
|
|
|
def __init__(self, config: ClapAudioConfig): |
|
super().__init__(config) |
|
self.audio_encoder = ClapAudioEncoder(config) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.audio_encoder.patch_embed.proj |
|
|
|
@add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ClapAudioConfig) |
|
def forward( |
|
self, |
|
input_features: Optional[torch.FloatTensor] = None, |
|
is_longer: Optional[torch.BoolTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPooling]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from datasets import load_dataset |
|
>>> from transformers import AutoProcessor, ClapAudioModel |
|
|
|
>>> dataset = load_dataset("ashraq/esc50") |
|
>>> audio_sample = dataset["train"]["audio"][0]["array"] |
|
|
|
>>> model = ClapAudioModel.from_pretrained("laion/clap-htsat-fused") |
|
>>> processor = AutoProcessor.from_pretrained("laion/clap-htsat-fused") |
|
|
|
>>> inputs = processor(audios=audio_sample, return_tensors="pt") |
|
|
|
>>> outputs = model(**inputs) |
|
>>> last_hidden_state = outputs.last_hidden_state |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
return self.audio_encoder( |
|
input_features=input_features, |
|
is_longer=is_longer, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
|
|
class ClapTextModel(ClapPreTrainedModel): |
|
""" |
|
|
|
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of |
|
cross-attention is added between the self-attention layers, following the architecture described in *Attention is |
|
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz |
|
Kaiser and Illia Polosukhin. |
|
|
|
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set |
|
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and |
|
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. |
|
|
|
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 |
|
|
|
""" |
|
|
|
config_class = ClapTextConfig |
|
|
|
|
|
def __init__(self, config, add_pooling_layer=True): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = ClapTextEmbeddings(config) |
|
self.encoder = ClapTextEncoder(config) |
|
|
|
self.pooler = ClapTextPooler(config) if add_pooling_layer else None |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: |
|
r""" |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if self.config.is_decoder: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
else: |
|
use_cache = False |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
batch_size, seq_length = input_shape |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
|
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) |
|
|
|
if token_type_ids is None: |
|
if hasattr(self.embeddings, "token_type_ids"): |
|
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) |
|
|
|
|
|
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) |
|
|
|
|
|
|
|
if self.config.is_decoder and encoder_hidden_states is not None: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
embedding_output = self.embeddings( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
|
|
if not return_dict: |
|
return (sequence_output, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
past_key_values=encoder_outputs.past_key_values, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
cross_attentions=encoder_outputs.cross_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings(CLAP_START_DOCSTRING) |
|
class ClapModel(ClapPreTrainedModel): |
|
config_class = ClapConfig |
|
|
|
def __init__(self, config: ClapConfig): |
|
super().__init__(config) |
|
|
|
if not isinstance(config.text_config, ClapTextConfig): |
|
raise ValueError( |
|
"config.text_config is expected to be of type ClapTextConfig but is of type" |
|
f" {type(config.text_config)}." |
|
) |
|
|
|
if not isinstance(config.audio_config, ClapAudioConfig): |
|
raise ValueError( |
|
"config.audio_config is expected to be of type ClapAudioConfig but is of type" |
|
f" {type(config.audio_config)}." |
|
) |
|
|
|
text_config = config.text_config |
|
audio_config = config.audio_config |
|
|
|
self.logit_scale_a = nn.Parameter(torch.tensor(math.log(config.logit_scale_init_value))) |
|
self.logit_scale_t = nn.Parameter(torch.tensor(math.log(config.logit_scale_init_value))) |
|
|
|
self.projection_dim = config.projection_dim |
|
|
|
self.text_model = ClapTextModel(text_config) |
|
self.text_projection = ClapProjectionLayer(text_config) |
|
|
|
self.audio_model = ClapAudioModel(audio_config) |
|
self.audio_projection = ClapProjectionLayer(audio_config) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(CLAP_TEXT_INPUTS_DOCSTRING) |
|
def get_text_features( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> torch.FloatTensor: |
|
r""" |
|
Returns: |
|
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by |
|
applying the projection layer to the pooled output of [`ClapTextModel`]. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, ClapModel |
|
|
|
>>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused") |
|
|
|
>>> inputs = tokenizer(["the sound of a cat", "the sound of a dog"], padding=True, return_tensors="pt") |
|
>>> text_features = model.get_text_features(**inputs) |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
text_outputs = self.text_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output = text_outputs[1] if return_dict is not None else text_outputs.pooler_output |
|
text_features = self.text_projection(pooled_output) |
|
text_features = F.normalize(text_features, dim=-1) |
|
|
|
return text_features |
|
|
|
@add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING) |
|
def get_audio_features( |
|
self, |
|
input_features: Optional[torch.Tensor] = None, |
|
is_longer: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> torch.FloatTensor: |
|
r""" |
|
Returns: |
|
audio_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The audio embeddings obtained by |
|
applying the projection layer to the pooled output of [`ClapAudioModel`]. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoFeatureExtractor, ClapModel |
|
>>> import torch |
|
|
|
>>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused") |
|
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused") |
|
>>> random_audio = torch.rand((16_000)) |
|
>>> inputs = feature_extractor(random_audio, return_tensors="pt") |
|
>>> audio_features = model.get_audio_features(**inputs) |
|
```""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
audio_outputs = self.audio_model( |
|
input_features=input_features, |
|
is_longer=is_longer, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output = audio_outputs[1] if not return_dict else audio_outputs.pooler_output |
|
|
|
audio_features = self.audio_projection(pooled_output) |
|
audio_features = F.normalize(audio_features, dim=-1) |
|
|
|
return audio_features |
|
|
|
@add_start_docstrings_to_model_forward(CLAP_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=ClapOutput, config_class=ClapConfig) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
input_features: Optional[torch.FloatTensor] = None, |
|
is_longer: Optional[torch.BoolTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
return_loss: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, ClapOutput]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from datasets import load_dataset |
|
>>> from transformers import AutoProcessor, ClapModel |
|
|
|
>>> dataset = load_dataset("ashraq/esc50") |
|
>>> audio_sample = dataset["train"]["audio"][0]["array"] |
|
|
|
>>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused") |
|
>>> processor = AutoProcessor.from_pretrained("laion/clap-htsat-unfused") |
|
|
|
>>> input_text = ["Sound of a dog", "Sound of vaccum cleaner"] |
|
|
|
>>> inputs = processor(text=input_text, audios=audio_sample, return_tensors="pt", padding=True) |
|
|
|
>>> outputs = model(**inputs) |
|
>>> logits_per_audio = outputs.logits_per_audio # this is the audio-text similarity score |
|
>>> probs = logits_per_audio.softmax(dim=-1) # we can take the softmax to get the label probabilities |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
audio_outputs = self.audio_model( |
|
input_features=input_features, |
|
is_longer=is_longer, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
text_outputs = self.text_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
audio_embeds = audio_outputs[1] if not return_dict else audio_outputs.pooler_output |
|
audio_embeds = self.audio_projection(audio_embeds) |
|
|
|
text_embeds = text_outputs[1] if not return_dict else text_outputs.pooler_output |
|
text_embeds = self.text_projection(text_embeds) |
|
|
|
|
|
audio_embeds = audio_embeds / audio_embeds.norm(p=2, dim=-1, keepdim=True) |
|
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) |
|
|
|
|
|
logit_scale_text = self.logit_scale_t.exp() |
|
logit_scale_audio = self.logit_scale_a.exp() |
|
logits_per_text = torch.matmul(text_embeds, audio_embeds.t()) * logit_scale_text |
|
logits_per_audio = torch.matmul(audio_embeds, text_embeds.t()) * logit_scale_audio |
|
|
|
loss = None |
|
if return_loss: |
|
caption_loss = contrastive_loss(logits_per_text) |
|
audio_loss = contrastive_loss(logits_per_audio.t()) |
|
loss = (caption_loss + audio_loss) / 2.0 |
|
|
|
if not return_dict: |
|
output = (logits_per_audio, logits_per_text, text_embeds, audio_embeds, text_outputs, audio_outputs) |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return ClapOutput( |
|
loss=loss, |
|
logits_per_audio=logits_per_audio, |
|
logits_per_text=logits_per_text, |
|
text_embeds=text_embeds, |
|
audio_embeds=audio_embeds, |
|
text_model_output=text_outputs, |
|
audio_model_output=audio_outputs, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
CLAP Text Model with a projection layer on top (a linear layer on top of the pooled output). |
|
""", |
|
CLAP_START_DOCSTRING, |
|
) |
|
class ClapTextModelWithProjection(ClapPreTrainedModel): |
|
config_class = ClapTextConfig |
|
|
|
def __init__(self, config: ClapTextConfig): |
|
super().__init__(config) |
|
self.text_model = ClapTextModel(config) |
|
self.text_projection = ClapProjectionLayer(config) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.text_model.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.text_model.embeddings.word_embeddings = value |
|
|
|
@add_start_docstrings_to_model_forward(CLAP_TEXT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=ClapTextModelOutput, config_class=ClapTextConfig) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, ClapTextModelOutput]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, ClapTextModelWithProjection |
|
|
|
>>> model = ClapTextModelWithProjection.from_pretrained("laion/clap-htsat-unfused") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused") |
|
|
|
>>> inputs = tokenizer(["a sound of a cat", "a sound of a dog"], padding=True, return_tensors="pt") |
|
|
|
>>> outputs = model(**inputs) |
|
>>> text_embeds = outputs.text_embeds |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
text_outputs = self.text_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output = text_outputs[1] if not return_dict else text_outputs.pooler_output |
|
|
|
text_embeds = self.text_projection(pooled_output) |
|
|
|
if not return_dict: |
|
outputs = (text_embeds, text_outputs[0]) + text_outputs[2:] |
|
return tuple(output for output in outputs if output is not None) |
|
|
|
return ClapTextModelOutput( |
|
text_embeds=text_embeds, |
|
last_hidden_state=text_outputs.last_hidden_state, |
|
hidden_states=text_outputs.hidden_states, |
|
attentions=text_outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
CLAP Audio Model with a projection layer on top (a linear layer on top of the pooled output). |
|
""", |
|
CLAP_START_DOCSTRING, |
|
) |
|
class ClapAudioModelWithProjection(ClapPreTrainedModel): |
|
config_class = ClapAudioConfig |
|
main_input_name = "input_features" |
|
|
|
def __init__(self, config: ClapAudioConfig): |
|
super().__init__(config) |
|
self.audio_model = ClapAudioModel(config) |
|
self.audio_projection = ClapProjectionLayer(config) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.audio_model.audio_encoder.patch_embed.proj |
|
|
|
@add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=ClapAudioModelOutput, config_class=ClapAudioConfig) |
|
def forward( |
|
self, |
|
input_features: Optional[torch.FloatTensor] = None, |
|
is_longer: Optional[torch.BoolTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, ClapAudioModelOutput]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from datasets import load_dataset |
|
>>> from transformers import ClapAudioModelWithProjection, ClapProcessor |
|
|
|
>>> model = ClapAudioModelWithProjection.from_pretrained("laion/clap-htsat-fused") |
|
>>> processor = ClapProcessor.from_pretrained("laion/clap-htsat-fused") |
|
|
|
>>> dataset = load_dataset("ashraq/esc50") |
|
>>> audio_sample = dataset["train"]["audio"][0]["array"] |
|
|
|
>>> inputs = processor(audios=audio_sample, return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
>>> audio_embeds = outputs.audio_embeds |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
audio_outputs = self.audio_model( |
|
input_features=input_features, |
|
is_longer=is_longer, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output = audio_outputs[1] if not return_dict else audio_outputs.pooler_output |
|
|
|
audio_embeds = self.audio_projection(pooled_output) |
|
|
|
if not return_dict: |
|
outputs = (audio_embeds, audio_outputs[0]) + audio_outputs[2:] |
|
return tuple(output for output in outputs if output is not None) |
|
|
|
return ClapAudioModelOutput( |
|
audio_embeds=audio_embeds, |
|
last_hidden_state=audio_outputs.last_hidden_state, |
|
attentions=audio_outputs.attentions, |
|
hidden_states=audio_outputs.hidden_states, |
|
) |
|
|