|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch BridgeTower Model""" |
|
|
|
import math |
|
from collections import OrderedDict |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
|
|
from ...activations import ACT2FN, QuickGELUActivation |
|
from ...modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
MaskedLMOutput, |
|
ModelOutput, |
|
SequenceClassifierOutput, |
|
) |
|
from ...modeling_utils import PreTrainedModel, apply_chunking_to_forward |
|
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer |
|
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings |
|
from .configuration_bridgetower import BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "BridgeTowerConfig" |
|
_CHECKPOINT_FOR_DOC = "BridgeTower/bridgetower-base" |
|
_TOKENIZER_FOR_DOC = "RobertaTokenizer" |
|
|
|
BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"BridgeTower/bridgetower-base", |
|
"BridgeTower/bridgetower-base-itm-mlm" |
|
|
|
] |
|
|
|
|
|
BRIDGETOWER_START_DOCSTRING = r""" |
|
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ subclass. Use |
|
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and |
|
behavior. |
|
|
|
Parameters: |
|
config ([`BridgeTowerConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
BRIDGETOWER_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `({0})`): |
|
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See |
|
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input |
|
IDs?](../glossary#input-ids) |
|
|
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, |
|
1]`: |
|
- 0 corresponds to a *sentence A* token, |
|
- 1 corresponds to a *sentence B* token. |
|
[What are token type IDs?](../glossary#token-type-ids) |
|
|
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Pixel values can be obtained using [`BridgeTowerImageProcessor`]. See |
|
[`BridgeTowerImageProcessor.__call__`] for details. |
|
|
|
pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): |
|
Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for pixels that are real (i.e. **not masked**), |
|
- 0 for pixels that are padding (i.e. **masked**). |
|
`What are attention masks? <../glossary.html#attention-mask>`__ |
|
|
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
|
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`, *optional*): |
|
Optionally, instead of passing `pixel_values`, you can choose to directly pass an embedded representation. |
|
This is useful if you want more control over how to convert `pixel_values` into patch embeddings. |
|
|
|
image_token_type_idx (`int`, *optional*): |
|
- The token type ids for images. |
|
|
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
|
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@dataclass |
|
class BridgeTowerModelOutput(ModelOutput): |
|
""" |
|
Output type of [`BridgeTowerModel`]. |
|
|
|
Args: |
|
text_features (`torch.FloatTensor` of shape `(batch_size, text_sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the text output of the last layer of the model. |
|
image_features (`torch.FloatTensor` of shape `(batch_size, image_sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the image output of the last layer of the model. |
|
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size x 2)`): |
|
Concatenation of last layer hidden-state of the first token of the text and image sequence (classification |
|
token), respectively, after further processing through layers used for auxiliary pretraining tasks. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of |
|
the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
text_features: torch.FloatTensor = None |
|
image_features: torch.FloatTensor = None |
|
pooler_output: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class BridgeTowerContrastiveOutput(ModelOutput): |
|
""" |
|
Output type of ['BridgeTowerForContrastiveLearning'] |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`: |
|
Image-text contrastive loss. |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
text_embeds (`torch.FloatTensor)`, *optional*, returned when model is initialized with `with_projection=True`): |
|
The text embeddings obtained by applying the projection layer to the pooler_output. |
|
image_embeds (`torch.FloatTensor)`, *optional*, returned when model is initialized with `with_projection=True`): |
|
The image embeddings obtained by applying the projection layer to the pooler_output. |
|
cross_embeds (`torch.FloatTensor)`, *optional*, returned when model is initialized with `with_projection=True`): |
|
The text-image cross-modal embeddings obtained by applying the projection layer to the pooler_output. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of |
|
the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
text_embeds: Optional[Tuple[torch.FloatTensor]] = None |
|
image_embeds: Optional[Tuple[torch.FloatTensor]] = None |
|
cross_embeds: Optional[Tuple[torch.FloatTensor]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
class BridgeTowerResidualAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
self.attn = nn.MultiheadAttention(config.hidden_size, config.hidden_size // 64) |
|
self.ln_1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.mlp = nn.ModuleDict( |
|
OrderedDict( |
|
[ |
|
("c_fc", nn.Linear(config.hidden_size, config.hidden_size * 4)), |
|
("gelu", QuickGELUActivation()), |
|
("c_proj", nn.Linear(config.hidden_size * 4, config.hidden_size)), |
|
] |
|
) |
|
) |
|
self.ln_2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.attn_mask = None |
|
|
|
def attention(self, hidden_state: torch.Tensor, attention_mask: torch.Tensor): |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(dtype=torch.bool, device=hidden_state.device) |
|
self.attn_mask = ( |
|
self.attn_mask.to(dtype=hidden_state.dtype, device=hidden_state.device) |
|
if self.attn_mask is not None |
|
else None |
|
) |
|
return self.attn( |
|
hidden_state, |
|
hidden_state, |
|
hidden_state, |
|
need_weights=False, |
|
attn_mask=self.attn_mask, |
|
key_padding_mask=attention_mask, |
|
)[0] |
|
|
|
def forward(self, hidden_state: torch.Tensor, attention_mask: torch.Tensor = None): |
|
residual_state = hidden_state + self.attention(self.ln_1(hidden_state), attention_mask) |
|
hidden_state = self.ln_2(residual_state) |
|
for _, layer in self.mlp.items(): |
|
hidden_state = layer(hidden_state) |
|
hidden_state = residual_state + hidden_state |
|
return hidden_state |
|
|
|
|
|
class BridgeTowerTransformer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.num_hidden_layers = config.num_hidden_layers |
|
if config.remove_last_layer: |
|
self.resblocks = nn.ModuleList( |
|
[BridgeTowerResidualAttention(config) for _ in range(self.num_hidden_layers - 1)] |
|
) |
|
else: |
|
self.resblocks = nn.ModuleList( |
|
[BridgeTowerResidualAttention(config) for _ in range(self.num_hidden_layers)] |
|
) |
|
self.stop_gradient = config.stop_gradient |
|
|
|
def forward(self, hidden_state: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): |
|
hidden_states = [] |
|
for block in self.resblocks: |
|
hidden_state = block(hidden_state, attention_mask) |
|
if self.stop_gradient: |
|
hidden_states.append(hidden_state.detach()) |
|
else: |
|
hidden_states.append(hidden_state) |
|
return hidden_states |
|
|
|
|
|
|
|
class BridgeTowerVisionEmbeddings(nn.Module): |
|
def __init__(self, config: BridgeTowerVisionConfig): |
|
super().__init__() |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.image_size = config.image_size |
|
self.patch_size = config.patch_size |
|
|
|
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) |
|
|
|
self.patch_embedding = nn.Conv2d( |
|
in_channels=config.num_channels, |
|
out_channels=self.embed_dim, |
|
kernel_size=self.patch_size, |
|
stride=self.patch_size, |
|
bias=False, |
|
) |
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2 |
|
self.num_positions = self.num_patches + 1 |
|
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) |
|
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) |
|
|
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: |
|
batch_size = pixel_values.shape[0] |
|
target_dtype = self.patch_embedding.weight.dtype |
|
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) |
|
patch_embeds = patch_embeds.flatten(2).transpose(1, 2) |
|
|
|
class_embeds = self.class_embedding.expand(batch_size, 1, -1) |
|
embeddings = torch.cat([class_embeds, patch_embeds], dim=1) |
|
embeddings = embeddings + self.position_embedding(self.position_ids) |
|
return embeddings |
|
|
|
|
|
class BridgeTowerVisionTransformer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
self.embeddings = BridgeTowerVisionEmbeddings(config) |
|
self.ln_pre = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.transformer = BridgeTowerTransformer(config) |
|
self.ln_post = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.share_layernorm = config.share_layernorm |
|
if not config.share_layernorm: |
|
self.ln_separate = nn.ModuleList( |
|
[nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) for _ in range(config.num_hidden_layers)] |
|
) |
|
|
|
def forward(self, pixel_values: torch.Tensor, attention_mask): |
|
hidden_states = self.embeddings(pixel_values) |
|
hidden_states = self.ln_pre(hidden_states) |
|
|
|
hidden_states = hidden_states.permute(1, 0, 2) |
|
|
|
hidden_states = self.transformer(hidden_states, attention_mask) |
|
|
|
hidden_states = torch.stack(hidden_states, dim=0) |
|
|
|
hidden_states = hidden_states.permute(0, 2, 1, 3) |
|
if self.share_layernorm: |
|
hidden_states = self.ln_post(hidden_states) |
|
else: |
|
hidden_states_stack = [] |
|
for hidden_states, ln in zip(hidden_states, self.ln_separate): |
|
hidden_states = ln(hidden_states) |
|
hidden_states_stack.append(hidden_states) |
|
|
|
hidden_states = torch.stack(hidden_states_stack, dim=0) |
|
return hidden_states |
|
|
|
def forward_pre(self, pixel_values: torch.Tensor): |
|
hidden_states = self.embeddings(pixel_values) |
|
hidden_states = self.ln_pre(hidden_states) |
|
|
|
hidden_states = hidden_states.permute(1, 0, 2) |
|
return hidden_states |
|
|
|
def forward_post(self, hidden_state: torch.Tensor): |
|
visual_output_post = hidden_state.permute(1, 0, 2) |
|
visual_output_post = self.ln_post(visual_output_post) |
|
return visual_output_post |
|
|
|
|
|
class BridgeTowerLinkTower(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.link_tower_type = config.link_tower_type |
|
self.hidden_size = config.hidden_size |
|
if config.link_tower_type in ["add", "scaled_add", "interpolate"]: |
|
if config.link_tower_type == "scaled_add": |
|
self.scaled_factor = nn.Parameter(torch.tensor(1.0)) |
|
elif config.link_tower_type == "interpolate": |
|
self.beta = nn.Parameter(torch.tensor(0.5)) |
|
self.LayerNorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) |
|
else: |
|
raise NotImplementedError(f"link_tower_type {config.link_tower_type} is not implemented") |
|
|
|
def forward(self, hidden_states, cross_modal_hidden_states, attention_mask): |
|
if self.link_tower_type == "add": |
|
return self.LayerNorm(hidden_states + cross_modal_hidden_states) |
|
elif self.link_tower_type == "scaled_add": |
|
return self.LayerNorm(hidden_states * self.scaled_factor + cross_modal_hidden_states) |
|
elif self.link_tower_type == "interpolate": |
|
return self.LayerNorm(hidden_states * (1 - self.beta) + cross_modal_hidden_states * self.beta) |
|
else: |
|
raise NotImplementedError(f"link_tower_type {self.link_tower_type} is not implemented") |
|
|
|
|
|
|
|
class BridgeTowerSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
|
|
class BridgeTowerIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
return hidden_states |
|
|
|
|
|
|
|
class BridgeTowerOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
|
|
class BridgeTowerPooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
|
|
class BridgeTowerSelfAttention(nn.Module): |
|
def __init__(self, config, position_embedding_type=None): |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): |
|
raise ValueError( |
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " |
|
f"heads ({config.num_attention_heads})" |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
self.position_embedding_type = position_embedding_type or getattr( |
|
config, "position_embedding_type", "absolute" |
|
) |
|
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) |
|
|
|
self.is_decoder = config.is_decoder |
|
|
|
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
|
|
|
|
|
|
is_cross_attention = encoder_hidden_states is not None |
|
|
|
if is_cross_attention and past_key_value is not None: |
|
|
|
key_layer = past_key_value[0] |
|
value_layer = past_key_value[1] |
|
attention_mask = encoder_attention_mask |
|
elif is_cross_attention: |
|
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) |
|
attention_mask = encoder_attention_mask |
|
elif past_key_value is not None: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) |
|
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) |
|
else: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
use_cache = past_key_value is not None |
|
if self.is_decoder: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_key_value = (key_layer, value_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": |
|
query_length, key_length = query_layer.shape[2], key_layer.shape[2] |
|
if use_cache: |
|
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( |
|
-1, 1 |
|
) |
|
else: |
|
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) |
|
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) |
|
distance = position_ids_l - position_ids_r |
|
|
|
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) |
|
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) |
|
|
|
if self.position_embedding_type == "relative_key": |
|
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) |
|
attention_scores = attention_scores + relative_position_scores |
|
elif self.position_embedding_type == "relative_key_query": |
|
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) |
|
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) |
|
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key |
|
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
if attention_mask is not None: |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(new_context_layer_shape) |
|
|
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
|
|
if self.is_decoder: |
|
outputs = outputs + (past_key_value,) |
|
return outputs |
|
|
|
|
|
|
|
class BridgeTowerAttention(nn.Module): |
|
def __init__(self, config, position_embedding_type=None): |
|
super().__init__() |
|
self.self = BridgeTowerSelfAttention(config, position_embedding_type=position_embedding_type) |
|
self.output = BridgeTowerSelfOutput(config) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads |
|
) |
|
|
|
|
|
self.self.query = prune_linear_layer(self.self.query, index) |
|
self.self.key = prune_linear_layer(self.self.key, index) |
|
self.self.value = prune_linear_layer(self.self.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) |
|
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
self_outputs = self.self( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
outputs = (attention_output,) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
class BridgeTowerBertCrossLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = BridgeTowerAttention(config) |
|
self.is_decoder = config.is_decoder |
|
self.add_cross_attention = config.add_cross_attention |
|
self.crossattention = BridgeTowerAttention(config) |
|
self.intermediate = BridgeTowerIntermediate(config) |
|
self.output = BridgeTowerOutput(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
encoder_hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
): |
|
|
|
self_attention_outputs = self.attention( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
head_mask=None, |
|
output_attentions=output_attentions, |
|
past_key_value=None, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
|
|
|
|
|
|
outputs = self_attention_outputs[1:] |
|
|
|
cross_attention_outputs = self.crossattention( |
|
attention_output, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
) |
|
attention_output = cross_attention_outputs[0] |
|
|
|
outputs = outputs + cross_attention_outputs[1:-1] |
|
|
|
layer_output = apply_chunking_to_forward( |
|
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output |
|
) |
|
outputs = (layer_output,) + outputs |
|
|
|
return outputs |
|
|
|
def feed_forward_chunk(self, attention_output): |
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
class BridgeTowerTextLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = BridgeTowerAttention(config) |
|
self.is_decoder = config.is_decoder |
|
self.add_cross_attention = config.add_cross_attention |
|
if self.add_cross_attention: |
|
if not self.is_decoder: |
|
raise ValueError(f"{self} should be used as a decoder model if cross attention is added") |
|
self.crossattention = BridgeTowerAttention(config, position_embedding_type="absolute") |
|
self.intermediate = BridgeTowerIntermediate(config) |
|
self.output = BridgeTowerOutput(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
|
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None |
|
self_attention_outputs = self.attention( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
output_attentions=output_attentions, |
|
past_key_value=self_attn_past_key_value, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
|
|
|
|
if self.is_decoder: |
|
outputs = self_attention_outputs[1:-1] |
|
present_key_value = self_attention_outputs[-1] |
|
else: |
|
outputs = self_attention_outputs[1:] |
|
|
|
cross_attn_present_key_value = None |
|
if self.is_decoder and encoder_hidden_states is not None: |
|
if not hasattr(self, "crossattention"): |
|
raise ValueError( |
|
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" |
|
" by setting `config.add_cross_attention=True`" |
|
) |
|
|
|
|
|
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None |
|
cross_attention_outputs = self.crossattention( |
|
attention_output, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
cross_attn_past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = cross_attention_outputs[0] |
|
outputs = outputs + cross_attention_outputs[1:-1] |
|
|
|
|
|
cross_attn_present_key_value = cross_attention_outputs[-1] |
|
present_key_value = present_key_value + cross_attn_present_key_value |
|
|
|
layer_output = apply_chunking_to_forward( |
|
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output |
|
) |
|
outputs = (layer_output,) + outputs |
|
|
|
|
|
if self.is_decoder: |
|
outputs = outputs + (present_key_value,) |
|
|
|
return outputs |
|
|
|
def feed_forward_chunk(self, attention_output): |
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
|
|
class BridgeTowerTextEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList([BridgeTowerTextLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = False, |
|
output_hidden_states: Optional[bool] = False, |
|
return_dict: Optional[bool] = True, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
next_decoder_cache = () if use_cache else None |
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
past_key_value = past_key_values[i] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, past_key_value, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[-1],) |
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
if self.config.add_cross_attention: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
next_decoder_cache, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_decoder_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
|
|
class BridgeTowerTextEmbeddings(nn.Module): |
|
""" |
|
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. |
|
""" |
|
|
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) |
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) |
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) |
|
|
|
|
|
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") |
|
self.register_buffer( |
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False |
|
) |
|
self.register_buffer( |
|
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False |
|
) |
|
|
|
|
|
self.padding_idx = config.pad_token_id |
|
self.position_embeddings = nn.Embedding( |
|
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx |
|
) |
|
|
|
def forward( |
|
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 |
|
): |
|
if position_ids is None: |
|
if input_ids is not None: |
|
|
|
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) |
|
else: |
|
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) |
|
|
|
if input_ids is not None: |
|
input_shape = input_ids.size() |
|
else: |
|
input_shape = inputs_embeds.size()[:-1] |
|
|
|
seq_length = input_shape[1] |
|
|
|
|
|
|
|
|
|
if token_type_ids is None: |
|
if hasattr(self, "token_type_ids"): |
|
buffered_token_type_ids = self.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
|
|
embeddings = inputs_embeds + token_type_embeddings |
|
if self.position_embedding_type == "absolute": |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings += position_embeddings |
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
def create_position_ids_from_inputs_embeds(self, inputs_embeds): |
|
""" |
|
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. |
|
|
|
Args: |
|
inputs_embeds: torch.Tensor |
|
|
|
Returns: torch.Tensor |
|
""" |
|
input_shape = inputs_embeds.size()[:-1] |
|
sequence_length = input_shape[1] |
|
|
|
position_ids = torch.arange( |
|
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device |
|
) |
|
return position_ids.unsqueeze(0).expand(input_shape) |
|
|
|
|
|
|
|
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): |
|
""" |
|
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols |
|
are ignored. This is modified from fairseq's `utils.make_positions`. |
|
|
|
Args: |
|
x: torch.Tensor x: |
|
|
|
Returns: torch.Tensor |
|
""" |
|
|
|
mask = input_ids.ne(padding_idx).int() |
|
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask |
|
return incremental_indices.long() + padding_idx |
|
|
|
|
|
class BridgeTowerPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = BridgeTowerConfig |
|
base_model_prefix = "bridgetower" |
|
supports_gradient_checkpointing = False |
|
_no_split_modules = ["BridgeTowerSelfAttention", "BridgeTowerResidualAttention"] |
|
_skip_keys_device_placement = "past_key_values" |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, BridgeTowerVisionModel): |
|
proj_std = (module.visual.transformer.hidden_size**-0.5) * ( |
|
(2 * module.visual.transformer.num_hidden_layers) ** -0.5 |
|
) |
|
attn_std = module.visual.transformer.hidden_size**-0.5 |
|
fc_std = (2 * module.visual.transformer.hidden_size) ** -0.5 |
|
for block in module.visual.transformer.resblocks: |
|
nn.init.normal_(block.attn.in_proj_weight, std=attn_std * self.config.initializer_factor) |
|
nn.init.normal_(block.attn.out_proj.weight, std=proj_std * self.config.initializer_factor) |
|
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std * self.config.initializer_factor) |
|
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std * self.config.initializer_factor) |
|
|
|
nn.init.normal_(module.visual.embeddings.class_embedding, std=attn_std * self.config.initializer_factor) |
|
nn.init.normal_( |
|
module.visual.embeddings.position_embedding.weight, std=attn_std * self.config.initializer_factor |
|
) |
|
elif isinstance(module, (nn.Linear, nn.Conv2d, nn.Embedding)): |
|
module.weight.data.normal_(mean=0.0, std=0.05 * self.config.initializer_factor) |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
if isinstance(module, nn.Linear) and module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
|
|
class BridgeTowerVisionModel(BridgeTowerPreTrainedModel): |
|
config_class = BridgeTowerVisionConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.visual = BridgeTowerVisionTransformer(config) |
|
|
|
@property |
|
def dtype(self): |
|
return self.visual.embeddings.patch_embedding.weight.dtype |
|
|
|
def forward(self, image, image_mask=None): |
|
return self.visual(image.type(self.dtype), image_mask) |
|
|
|
|
|
class BridgeTowerTextModel(BridgeTowerPreTrainedModel): |
|
""" |
|
|
|
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of |
|
cross-attention is added between the self-attention layers, following the architecture described in *Attention is |
|
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz |
|
Kaiser and Illia Polosukhin. |
|
|
|
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set |
|
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and |
|
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. |
|
|
|
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 |
|
|
|
""" |
|
|
|
config_class = BridgeTowerTextConfig |
|
|
|
def __init__(self, config, add_pooling_layer=True): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = BridgeTowerTextEmbeddings(config) |
|
self.encoder = BridgeTowerTextEncoder(config) |
|
|
|
self.pooler = BridgeTowerPooler(config) if add_pooling_layer else None |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: |
|
r""" |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if self.config.is_decoder: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
else: |
|
use_cache = False |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
batch_size, seq_length = input_shape |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
|
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) |
|
|
|
if token_type_ids is None: |
|
if hasattr(self.embeddings, "token_type_ids"): |
|
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) |
|
|
|
|
|
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) |
|
|
|
|
|
|
|
if self.config.is_decoder and encoder_hidden_states is not None: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
embedding_output = self.embeddings( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
|
|
if not return_dict: |
|
return (sequence_output, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
past_key_values=encoder_outputs.past_key_values, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
cross_attentions=encoder_outputs.cross_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare BridgeTower Model transformer outputting BridgeTowerModelOutput object without any specific head on" |
|
" top.", |
|
BRIDGETOWER_START_DOCSTRING, |
|
) |
|
class BridgeTowerModel(BridgeTowerPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
vision_config = config.vision_config |
|
text_config = config.text_config |
|
|
|
if config.share_cross_modal_transformer_layers: |
|
self.cross_modal_text_transform = nn.Linear(text_config.hidden_size, config.hidden_size) |
|
self.cross_modal_image_transform = nn.Linear(vision_config.hidden_size, config.hidden_size) |
|
else: |
|
self.cross_modal_text_transform = nn.ModuleList( |
|
[nn.Linear(text_config.hidden_size, config.hidden_size) for _ in range(config.num_hidden_layers)] |
|
) |
|
self.cross_modal_image_transform = nn.ModuleList( |
|
[nn.Linear(vision_config.hidden_size, config.hidden_size) for _ in range(config.num_hidden_layers)] |
|
) |
|
|
|
self.token_type_embeddings = nn.Embedding(2, config.hidden_size) |
|
|
|
self.vision_model = BridgeTowerVisionModel(vision_config) |
|
|
|
self.text_model = BridgeTowerTextModel(text_config) |
|
|
|
if not vision_config.share_layernorm and config.init_layernorm_from_vision_encoder: |
|
for ln in self.vision_model.visual.cross_modal_ln_separate: |
|
ln.weight.data = self.vision_model.visual.ln_post.weight.data |
|
ln.bias.data = self.vision_model.visual.ln_post.bias.data |
|
|
|
self.cross_modal_image_layers = nn.ModuleList( |
|
[BridgeTowerBertCrossLayer(text_config) for _ in range(config.num_hidden_layers)] |
|
) |
|
self.cross_modal_text_layers = nn.ModuleList( |
|
[BridgeTowerBertCrossLayer(text_config) for _ in range(config.num_hidden_layers)] |
|
) |
|
|
|
|
|
self.cross_modal_image_pooler = BridgeTowerPooler(config) |
|
self.cross_modal_text_pooler = BridgeTowerPooler(config) |
|
|
|
|
|
self.cross_modal_text_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.cross_modal_image_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
if config.share_link_tower_layers: |
|
self.cross_modal_text_link_tower = BridgeTowerLinkTower(config) |
|
self.cross_modal_image_link_tower = BridgeTowerLinkTower(config) |
|
else: |
|
self.cross_modal_text_link_tower = nn.ModuleList( |
|
[BridgeTowerLinkTower(config) for _ in range(config.num_hidden_layers - 1)] |
|
) |
|
self.cross_modal_image_link_tower = nn.ModuleList( |
|
[BridgeTowerLinkTower(config) for _ in range(config.num_hidden_layers - 1)] |
|
) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.text_model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.text_model.set_input_embeddings(value) |
|
|
|
@add_start_docstrings_to_model_forward(BRIDGETOWER_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BridgeTowerModelOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
pixel_mask: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
image_embeds: Optional[torch.FloatTensor] = None, |
|
image_token_type_idx: Optional[int] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple[torch.Tensor], BridgeTowerModelOutput]: |
|
r""" |
|
output_hidden_states (`bool`, *optional*): |
|
If set to `True`, hidden states are returned as a list containing the hidden states of text, image, and |
|
cross-modal components respectively. i.e. `(hidden_states_text, hidden_states_image, |
|
hidden_states_cross_modal)` where each element is a list of the hidden states of the corresponding |
|
modality. `hidden_states_txt/img` are a list of tensors corresponding to unimodal hidden states and |
|
`hidden_states_cross_modal` is a list of tuples containing `cross_modal_text_hidden_states` and |
|
`cross_modal_image_hidden_states` of each brdige layer. |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels are currently not supported. |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import BridgeTowerProcessor, BridgeTowerModel |
|
>>> from PIL import Image |
|
>>> import requests |
|
|
|
>>> # prepare image and text |
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
>>> text = "hello world" |
|
>>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base") |
|
>>> model = BridgeTowerModel.from_pretrained("BridgeTower/bridgetower-base") |
|
|
|
>>> inputs = processor(image, text, return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
>>> outputs.keys() |
|
odict_keys(['text_features', 'image_features', 'pooler_output']) |
|
```""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
all_hidden_states_text = () if output_hidden_states else None |
|
all_hidden_states_image = () if output_hidden_states else None |
|
all_hidden_states_cross = () if output_hidden_states else None |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
image_token_type_idx = image_token_type_idx if image_token_type_idx else 1 |
|
input_shape = input_ids.size() |
|
text_embeds = self.text_model.embeddings(input_ids=input_ids) |
|
|
|
if output_hidden_states: |
|
all_hidden_states_text += (text_embeds,) |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(input_shape, dtype=torch.long, device=input_ids.device) |
|
extend_text_masks = self.text_model.get_extended_attention_mask(attention_mask, input_shape).to( |
|
input_ids.device |
|
) |
|
|
|
|
|
split_index = len(self.text_model.encoder.layer) - self.config.num_hidden_layers + 1 |
|
|
|
|
|
for layer in self.text_model.encoder.layer[:split_index]: |
|
text_embeds = layer(text_embeds, extend_text_masks)[0] |
|
|
|
if output_hidden_states: |
|
all_hidden_states_text += (text_embeds,) |
|
|
|
if image_embeds is None: |
|
image_embeds = self.vision_model.visual.forward_pre(pixel_values.type(self.vision_model.dtype)) |
|
else: |
|
|
|
image_embeds = image_embeds.permute(1, 0, 2) |
|
|
|
if output_hidden_states: |
|
all_hidden_states_image += (image_embeds,) |
|
|
|
|
|
for block in self.vision_model.visual.transformer.resblocks[:split_index]: |
|
image_embeds = block(image_embeds) |
|
if output_hidden_states: |
|
all_hidden_states_image += (image_embeds,) |
|
|
|
image_embeds_with_ln = self.vision_model.visual.forward_post(image_embeds.type(self.vision_model.dtype)) |
|
|
|
|
|
cross_modal_text = self.cross_modal_text_transform(text_embeds) |
|
|
|
text_token_type_embeddings = self.token_type_embeddings( |
|
torch.zeros(1, dtype=torch.long, device=input_ids.device) |
|
).expand_as(cross_modal_text) |
|
|
|
cross_modal_text = self.cross_modal_text_layernorm(cross_modal_text + text_token_type_embeddings) |
|
|
|
image_embeds_with_ln = self.cross_modal_image_transform(image_embeds_with_ln) |
|
image_token_type_embeddings = self.token_type_embeddings( |
|
torch.full((1,), image_token_type_idx, dtype=torch.long, device=input_ids.device) |
|
).expand_as(image_embeds_with_ln) |
|
|
|
image_embeds_with_ln = image_embeds_with_ln + image_token_type_embeddings |
|
cross_modal_image = self.cross_modal_image_layernorm(image_embeds_with_ln) |
|
|
|
pixel_mask = torch.ones( |
|
(cross_modal_image.size(0), cross_modal_image.size(1)), |
|
dtype=torch.long, |
|
device=input_ids.device, |
|
) |
|
extend_image_masks = self.text_model.get_extended_attention_mask(pixel_mask, pixel_mask.size()).to( |
|
input_ids.device |
|
) |
|
|
|
layer_outputs_text = self.cross_modal_text_layers[0]( |
|
cross_modal_text, |
|
cross_modal_image, |
|
attention_mask=extend_text_masks, |
|
encoder_attention_mask=extend_image_masks, |
|
output_attentions=output_attentions, |
|
) |
|
cross_text_features = layer_outputs_text[0] |
|
|
|
layer_outputs_image = self.cross_modal_image_layers[0]( |
|
cross_modal_image, |
|
cross_modal_text, |
|
attention_mask=extend_image_masks, |
|
encoder_attention_mask=extend_text_masks, |
|
output_attentions=output_attentions, |
|
) |
|
cross_image_features = layer_outputs_image[0] |
|
|
|
if output_hidden_states: |
|
all_hidden_states_cross += ((cross_text_features, cross_image_features),) |
|
|
|
if output_attentions: |
|
all_self_attentions += ((layer_outputs_text[1], layer_outputs_image[1]),) |
|
|
|
link_layer_index = 0 |
|
|
|
|
|
|
|
for i in range(split_index, len(self.text_model.encoder.layer)): |
|
text_embeds = self.text_model.encoder.layer[i](text_embeds, extend_text_masks)[0] |
|
image_embeds = self.vision_model.visual.transformer.resblocks[i](image_embeds).type( |
|
self.vision_model.dtype |
|
) |
|
image_embeds_with_ln = ( |
|
self.cross_modal_image_transform(self.vision_model.visual.forward_post(image_embeds)) |
|
+ image_token_type_embeddings |
|
) |
|
|
|
text_link_tower = self.cross_modal_text_link_tower[link_layer_index] |
|
image_link_tower = self.cross_modal_image_link_tower[link_layer_index] |
|
|
|
|
|
cross_text_features_ = text_link_tower( |
|
self.cross_modal_text_transform(text_embeds) + text_token_type_embeddings, |
|
cross_text_features, |
|
extend_text_masks, |
|
) |
|
cross_image_features_ = image_link_tower(image_embeds_with_ln, cross_image_features, extend_image_masks) |
|
|
|
|
|
layer_outputs_text = self.cross_modal_text_layers[link_layer_index + 1]( |
|
cross_text_features_, |
|
cross_image_features_, |
|
attention_mask=extend_text_masks, |
|
encoder_attention_mask=extend_image_masks, |
|
output_attentions=output_attentions, |
|
) |
|
cross_text_features = layer_outputs_text[0] |
|
|
|
layer_outputs_image = self.cross_modal_image_layers[link_layer_index + 1]( |
|
cross_image_features_, |
|
cross_text_features_, |
|
attention_mask=extend_image_masks, |
|
encoder_attention_mask=extend_text_masks, |
|
output_attentions=output_attentions, |
|
) |
|
cross_image_features = layer_outputs_image[0] |
|
|
|
link_layer_index += 1 |
|
|
|
if output_hidden_states: |
|
all_hidden_states_text += (text_embeds,) |
|
all_hidden_states_image += (image_embeds,) |
|
all_hidden_states_cross += ((cross_text_features, cross_image_features),) |
|
|
|
if output_attentions: |
|
all_self_attentions += ((layer_outputs_text[1], layer_outputs_image[1]),) |
|
|
|
|
|
text_features, image_features = cross_text_features, cross_image_features |
|
cls_features = self.get_cls_features(text_features, image_features) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = (all_hidden_states_text, all_hidden_states_image, all_hidden_states_cross) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [text_features, image_features, cls_features, all_hidden_states, all_self_attentions] |
|
if v is not None |
|
) |
|
|
|
return BridgeTowerModelOutput( |
|
text_features=text_features, |
|
image_features=image_features, |
|
pooler_output=cls_features, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
def get_cls_features(self, text_features, image_features): |
|
cls_features_text = self.cross_modal_text_pooler(text_features) |
|
cls_features_image = self.cross_modal_image_pooler(image_features) |
|
return torch.cat([cls_features_text, cls_features_image], dim=-1) |
|
|
|
|
|
|
|
class BridgeTowerPredictionHeadTransform(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
if isinstance(config.hidden_act, str): |
|
self.transform_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.transform_act_fn = config.hidden_act |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.transform_act_fn(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BridgeTowerMLMHead(nn.Module): |
|
def __init__(self, config, weight=None): |
|
super().__init__() |
|
self.config = config |
|
self.transform = BridgeTowerPredictionHeadTransform(config) |
|
self.decoder = nn.Linear(config.hidden_size, config.text_config.vocab_size, bias=False) |
|
self.bias = nn.Parameter(torch.zeros(config.text_config.vocab_size)) |
|
if weight is not None: |
|
self.decoder.weight = weight |
|
|
|
def forward(self, x): |
|
mlm_score = self.transform(x) |
|
mlm_score = self.decoder(mlm_score) + self.bias |
|
return mlm_score |
|
|
|
|
|
class BridgeTowerITMHead(nn.Module): |
|
def __init__(self, hidden_size): |
|
super().__init__() |
|
self.fc = nn.Linear(hidden_size, 2) |
|
|
|
def forward(self, x): |
|
itm_score = self.fc(x) |
|
return itm_score |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
BridgeTower Model with a language modeling head on top as done during pretraining. |
|
""", |
|
BRIDGETOWER_START_DOCSTRING, |
|
) |
|
class BridgeTowerForMaskedLM(BridgeTowerPreTrainedModel): |
|
_tied_weights_keys = ["mlm_score.decoder.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.bridgetower = BridgeTowerModel(config) |
|
self.mlm_score = BridgeTowerMLMHead(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.mlm_score.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.mlm_score.decoder = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(BRIDGETOWER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
pixel_mask: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
image_embeds: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
) -> Union[MaskedLMOutput, Tuple[torch.FloatTensor]]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the |
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import BridgeTowerProcessor, BridgeTowerForMaskedLM |
|
>>> from PIL import Image |
|
>>> import requests |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000360943.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB") |
|
>>> text = "a <mask> looking out of the window" |
|
|
|
>>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") |
|
>>> model = BridgeTowerForMaskedLM.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") |
|
|
|
>>> # prepare inputs |
|
>>> encoding = processor(image, text, return_tensors="pt") |
|
|
|
>>> # forward pass |
|
>>> outputs = model(**encoding) |
|
|
|
>>> results = processor.decode(outputs.logits.argmax(dim=-1).squeeze(0).tolist()) |
|
|
|
>>> print(results) |
|
.a cat looking out of the window. |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
outputs = self.bridgetower( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
pixel_values=pixel_values, |
|
pixel_mask=pixel_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
image_embeds=image_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
mlm_logits = self.mlm_score(outputs.text_features if return_dict else outputs[0]) |
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
|
|
labels = labels.to(mlm_logits.device) |
|
masked_lm_loss = loss_fct(mlm_logits.view(-1, self.config.text_config.vocab_size), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = tuple(mlm_logits) |
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
|
|
return MaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=mlm_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
BridgeTower Model transformer with a classifier head on top (a linear layer on top of the final hidden state of the |
|
[CLS] token) for image-to-text matching. |
|
""", |
|
BRIDGETOWER_START_DOCSTRING, |
|
) |
|
class BridgeTowerForImageAndTextRetrieval(BridgeTowerPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.bridgetower = BridgeTowerModel(config) |
|
|
|
self.itm_score = BridgeTowerITMHead(config.hidden_size * 2) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(BRIDGETOWER_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
pixel_mask: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
image_embeds: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
) -> Union[SequenceClassifierOutput, Tuple[torch.FloatTensor]]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*): |
|
Labels for computing the image-text matching loss. 0 means the pairs don't match and 1 means they match. |
|
The pairs with 0 will be skipped for calculation. |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import BridgeTowerProcessor, BridgeTowerForImageAndTextRetrieval |
|
>>> import requests |
|
>>> from PIL import Image |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
>>> texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"] |
|
|
|
>>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") |
|
>>> model = BridgeTowerForImageAndTextRetrieval.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") |
|
|
|
>>> # forward pass |
|
>>> scores = dict() |
|
>>> for text in texts: |
|
... # prepare inputs |
|
... encoding = processor(image, text, return_tensors="pt") |
|
... outputs = model(**encoding) |
|
... scores[text] = outputs.logits[0, 1].item() |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.bridgetower( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
pixel_values=pixel_values, |
|
pixel_mask=pixel_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
image_embeds=image_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooler_output = outputs.pooler_output if return_dict else outputs[2] |
|
|
|
logits = self.itm_score(pooler_output) |
|
|
|
itm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
|
|
labels = labels.to(logits.device) |
|
itm_loss = loss_fct(logits, labels) |
|
|
|
if not return_dict: |
|
output = tuple(logits) |
|
return ((itm_loss,) + output) if itm_loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=itm_loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class BridgeTowerContrastiveHead(nn.Module): |
|
def __init__(self, hidden_size, embed_size): |
|
super().__init__() |
|
self.fc = nn.Linear(hidden_size, embed_size) |
|
|
|
def forward(self, x): |
|
x = self.fc(x) |
|
return x |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
BridgeTower Model with a image-text contrastive head on top computing image-text contrastive loss. |
|
""", |
|
BRIDGETOWER_START_DOCSTRING, |
|
) |
|
class BridgeTowerForContrastiveLearning(BridgeTowerPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.bridgetower = BridgeTowerModel(config) |
|
|
|
self.itc_text_head = BridgeTowerContrastiveHead(config.hidden_size, config.contrastive_hidden_size) |
|
self.itc_image_head = BridgeTowerContrastiveHead(config.hidden_size, config.contrastive_hidden_size) |
|
self.itc_cross_modal_head = BridgeTowerContrastiveHead(config.hidden_size * 2, config.contrastive_hidden_size) |
|
|
|
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) |
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(BRIDGETOWER_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BridgeTowerContrastiveOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
pixel_mask: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
image_embeds: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = True, |
|
return_dict: Optional[bool] = None, |
|
return_loss: Optional[bool] = None, |
|
) -> Union[BridgeTowerContrastiveOutput, Tuple[torch.FloatTensor]]: |
|
r""" |
|
return_loss (`bool`, *optional*): |
|
Whether or not to return the contrastive loss. |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import BridgeTowerProcessor, BridgeTowerForContrastiveLearning |
|
>>> import requests |
|
>>> from PIL import Image |
|
>>> import torch |
|
|
|
>>> image_urls = [ |
|
... "https://farm4.staticflickr.com/3395/3428278415_81c3e27f15_z.jpg", |
|
... "http://images.cocodataset.org/val2017/000000039769.jpg", |
|
... ] |
|
>>> texts = ["two dogs in a car", "two cats sleeping on a couch"] |
|
>>> images = [Image.open(requests.get(url, stream=True).raw) for url in image_urls] |
|
|
|
>>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc") |
|
>>> model = BridgeTowerForContrastiveLearning.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc") |
|
|
|
>>> inputs = processor(images, texts, padding=True, return_tensors="pt") |
|
>>> loss = model(**inputs, return_loss=True).loss |
|
|
|
>>> inputs = processor(images, texts[::-1], padding=True, return_tensors="pt") |
|
>>> loss_swapped = model(**inputs, return_loss=True).loss |
|
|
|
>>> print("Loss", round(loss.item(), 4)) |
|
Loss 0.0019 |
|
|
|
>>> print("Loss with swapped images", round(loss_swapped.item(), 4)) |
|
Loss with swapped images 2.126 |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.bridgetower( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
pixel_values=pixel_values, |
|
pixel_mask=pixel_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
image_embeds=image_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=True, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooler_output = outputs.pooler_output if return_dict else outputs[2] |
|
hidden_states_txt, hidden_states_img, hidden_states_cross_modal = ( |
|
outputs.hidden_states if return_dict else outputs[3] |
|
) |
|
|
|
text_embeds = hidden_states_txt[-1] |
|
image_embeds = hidden_states_img[-1] |
|
|
|
image_embeds_with_ln = self.bridgetower.vision_model.visual.forward_post(image_embeds) |
|
image_token_type_embeddings = self.bridgetower.token_type_embeddings( |
|
torch.full((1,), 1, dtype=torch.long, device=self.bridgetower.token_type_embeddings.weight.device) |
|
).expand_as(image_embeds_with_ln) |
|
|
|
image_embeds = self.bridgetower.cross_modal_image_transform(image_embeds_with_ln) + image_token_type_embeddings |
|
|
|
|
|
text_embeds = nn.functional.normalize(self.itc_text_head(text_embeds[:, 0, :]), dim=-1, p=2) |
|
image_embeds = nn.functional.normalize(self.itc_image_head(image_embeds[:, 0, :]), dim=-1, p=2).to( |
|
device=text_embeds.device |
|
) |
|
cross_embeds = nn.functional.normalize(self.itc_cross_modal_head(pooler_output), dim=-1, p=2).to( |
|
device=text_embeds.device |
|
) |
|
|
|
logits = torch.stack([text_embeds, image_embeds, cross_embeds], dim=-2) |
|
|
|
logit_scale = self.logit_scale.exp().to(device=text_embeds.device) |
|
logits_text_to_image = torch.matmul(text_embeds, image_embeds.t()) * logit_scale |
|
logits_text_to_cross = torch.matmul(text_embeds, cross_embeds.t()) * logit_scale |
|
logits_image_to_cross = torch.matmul(image_embeds, cross_embeds.t()) * logit_scale |
|
|
|
itc_loss = None |
|
|
|
if return_loss: |
|
labels = torch.arange(len(logits), device=logits.device) |
|
text_to_image_loss = nn.functional.cross_entropy(logits_text_to_image, labels) |
|
text_to_cross_loss = nn.functional.cross_entropy(logits_text_to_cross, labels) |
|
image_to_cross_loss = nn.functional.cross_entropy(logits_image_to_cross, labels) |
|
itc_loss = (text_to_image_loss + text_to_cross_loss + image_to_cross_loss) / 3.0 |
|
|
|
if not return_dict: |
|
output = (logits, text_embeds, image_embeds, cross_embeds) + outputs[3:] |
|
return ((itc_loss,) + output) if itc_loss is not None else output |
|
|
|
return BridgeTowerContrastiveOutput( |
|
loss=itc_loss, |
|
logits=logits, |
|
text_embeds=text_embeds, |
|
image_embeds=image_embeds, |
|
cross_embeds=cross_embeds, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|