|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" BART model configuration""" |
|
import warnings |
|
from collections import OrderedDict |
|
from typing import Any, Mapping, Optional |
|
|
|
from ... import PreTrainedTokenizer |
|
from ...configuration_utils import PretrainedConfig |
|
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast |
|
from ...onnx.utils import compute_effective_axis_dimension |
|
from ...utils import TensorType, is_torch_available, logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
BART_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json", |
|
|
|
} |
|
|
|
|
|
class BartConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`BartModel`]. It is used to instantiate a BART |
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the BART |
|
[facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 50265): |
|
Vocabulary size of the BART model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`BartModel`] or [`TFBartModel`]. |
|
d_model (`int`, *optional*, defaults to 1024): |
|
Dimensionality of the layers and the pooler layer. |
|
encoder_layers (`int`, *optional*, defaults to 12): |
|
Number of encoder layers. |
|
decoder_layers (`int`, *optional*, defaults to 12): |
|
Number of decoder layers. |
|
encoder_attention_heads (`int`, *optional*, defaults to 16): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
decoder_attention_heads (`int`, *optional*, defaults to 16): |
|
Number of attention heads for each attention layer in the Transformer decoder. |
|
decoder_ffn_dim (`int`, *optional*, defaults to 4096): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. |
|
encoder_ffn_dim (`int`, *optional*, defaults to 4096): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. |
|
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"silu"` and `"gelu_new"` are supported. |
|
dropout (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
activation_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for activations inside the fully connected layer. |
|
classifier_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for classifier. |
|
max_position_embeddings (`int`, *optional*, defaults to 1024): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
init_std (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
encoder_layerdrop (`float`, *optional*, defaults to 0.0): |
|
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) |
|
for more details. |
|
decoder_layerdrop (`float`, *optional*, defaults to 0.0): |
|
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) |
|
for more details. |
|
scale_embedding (`bool`, *optional*, defaults to `False`): |
|
Scale embeddings by diving by sqrt(d_model). |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). |
|
num_labels (`int`, *optional*, defaults to 3): |
|
The number of labels to use in [`BartForSequenceClassification`]. |
|
forced_eos_token_id (`int`, *optional*, defaults to 2): |
|
The id of the token to force as the last generated token when `max_length` is reached. Usually set to |
|
`eos_token_id`. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import BartConfig, BartModel |
|
|
|
>>> # Initializing a BART facebook/bart-large style configuration |
|
>>> configuration = BartConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the facebook/bart-large style configuration |
|
>>> model = BartModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "bart" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=50265, |
|
max_position_embeddings=1024, |
|
encoder_layers=12, |
|
encoder_ffn_dim=4096, |
|
encoder_attention_heads=16, |
|
decoder_layers=12, |
|
decoder_ffn_dim=4096, |
|
decoder_attention_heads=16, |
|
encoder_layerdrop=0.0, |
|
decoder_layerdrop=0.0, |
|
activation_function="gelu", |
|
d_model=1024, |
|
dropout=0.1, |
|
attention_dropout=0.0, |
|
activation_dropout=0.0, |
|
init_std=0.02, |
|
classifier_dropout=0.0, |
|
scale_embedding=False, |
|
use_cache=True, |
|
num_labels=3, |
|
pad_token_id=1, |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
is_encoder_decoder=True, |
|
decoder_start_token_id=2, |
|
forced_eos_token_id=2, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.d_model = d_model |
|
self.encoder_ffn_dim = encoder_ffn_dim |
|
self.encoder_layers = encoder_layers |
|
self.encoder_attention_heads = encoder_attention_heads |
|
self.decoder_ffn_dim = decoder_ffn_dim |
|
self.decoder_layers = decoder_layers |
|
self.decoder_attention_heads = decoder_attention_heads |
|
self.dropout = dropout |
|
self.attention_dropout = attention_dropout |
|
self.activation_dropout = activation_dropout |
|
self.activation_function = activation_function |
|
self.init_std = init_std |
|
self.encoder_layerdrop = encoder_layerdrop |
|
self.decoder_layerdrop = decoder_layerdrop |
|
self.classifier_dropout = classifier_dropout |
|
self.use_cache = use_cache |
|
self.num_hidden_layers = encoder_layers |
|
self.scale_embedding = scale_embedding |
|
|
|
super().__init__( |
|
num_labels=num_labels, |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
is_encoder_decoder=is_encoder_decoder, |
|
decoder_start_token_id=decoder_start_token_id, |
|
forced_eos_token_id=forced_eos_token_id, |
|
**kwargs, |
|
) |
|
|
|
|
|
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False): |
|
self.forced_bos_token_id = self.bos_token_id |
|
warnings.warn( |
|
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " |
|
"The config can simply be saved and uploaded again to be fixed." |
|
) |
|
|
|
|
|
class BartOnnxConfig(OnnxSeq2SeqConfigWithPast): |
|
@property |
|
def inputs(self) -> Mapping[str, Mapping[int, str]]: |
|
if self.task in ["default", "seq2seq-lm"]: |
|
common_inputs = OrderedDict( |
|
[ |
|
("input_ids", {0: "batch", 1: "encoder_sequence"}), |
|
("attention_mask", {0: "batch", 1: "encoder_sequence"}), |
|
] |
|
) |
|
|
|
if self.use_past: |
|
common_inputs["decoder_input_ids"] = {0: "batch"} |
|
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} |
|
else: |
|
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} |
|
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} |
|
|
|
if self.use_past: |
|
self.fill_with_past_key_values_(common_inputs, direction="inputs") |
|
elif self.task == "causal-lm": |
|
|
|
common_inputs = OrderedDict( |
|
[ |
|
("input_ids", {0: "batch", 1: "encoder_sequence"}), |
|
("attention_mask", {0: "batch", 1: "encoder_sequence"}), |
|
] |
|
) |
|
if self.use_past: |
|
num_encoder_layers, _ = self.num_layers |
|
for i in range(num_encoder_layers): |
|
common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} |
|
common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} |
|
else: |
|
common_inputs = OrderedDict( |
|
[ |
|
("input_ids", {0: "batch", 1: "encoder_sequence"}), |
|
("attention_mask", {0: "batch", 1: "encoder_sequence"}), |
|
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), |
|
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), |
|
] |
|
) |
|
|
|
return common_inputs |
|
|
|
@property |
|
def outputs(self) -> Mapping[str, Mapping[int, str]]: |
|
if self.task in ["default", "seq2seq-lm"]: |
|
common_outputs = super().outputs |
|
else: |
|
common_outputs = super(OnnxConfigWithPast, self).outputs |
|
if self.use_past: |
|
num_encoder_layers, _ = self.num_layers |
|
for i in range(num_encoder_layers): |
|
common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} |
|
common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} |
|
return common_outputs |
|
|
|
def _generate_dummy_inputs_for_default_and_seq2seq_lm( |
|
self, |
|
tokenizer: PreTrainedTokenizer, |
|
batch_size: int = -1, |
|
seq_length: int = -1, |
|
is_pair: bool = False, |
|
framework: Optional[TensorType] = None, |
|
) -> Mapping[str, Any]: |
|
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( |
|
tokenizer, batch_size, seq_length, is_pair, framework |
|
) |
|
|
|
|
|
decoder_seq_length = seq_length if not self.use_past else 1 |
|
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( |
|
tokenizer, batch_size, decoder_seq_length, is_pair, framework |
|
) |
|
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} |
|
common_inputs = dict(**encoder_inputs, **decoder_inputs) |
|
|
|
if self.use_past: |
|
if not is_torch_available(): |
|
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") |
|
else: |
|
import torch |
|
batch, encoder_seq_length = common_inputs["input_ids"].shape |
|
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1] |
|
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads |
|
encoder_shape = ( |
|
batch, |
|
num_encoder_attention_heads, |
|
encoder_seq_length, |
|
self._config.hidden_size // num_encoder_attention_heads, |
|
) |
|
decoder_past_length = decoder_seq_length + 3 |
|
decoder_shape = ( |
|
batch, |
|
num_decoder_attention_heads, |
|
decoder_past_length, |
|
self._config.hidden_size // num_decoder_attention_heads, |
|
) |
|
|
|
common_inputs["decoder_attention_mask"] = torch.cat( |
|
[common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1 |
|
) |
|
|
|
common_inputs["past_key_values"] = [] |
|
|
|
num_encoder_layers, num_decoder_layers = self.num_layers |
|
min_num_layers = min(num_encoder_layers, num_decoder_layers) |
|
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers |
|
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" |
|
|
|
for _ in range(min_num_layers): |
|
common_inputs["past_key_values"].append( |
|
( |
|
torch.zeros(decoder_shape), |
|
torch.zeros(decoder_shape), |
|
torch.zeros(encoder_shape), |
|
torch.zeros(encoder_shape), |
|
) |
|
) |
|
|
|
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape |
|
for _ in range(min_num_layers, max_num_layers): |
|
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape))) |
|
return common_inputs |
|
|
|
def _generate_dummy_inputs_for_causal_lm( |
|
self, |
|
tokenizer: PreTrainedTokenizer, |
|
batch_size: int = -1, |
|
seq_length: int = -1, |
|
is_pair: bool = False, |
|
framework: Optional[TensorType] = None, |
|
) -> Mapping[str, Any]: |
|
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( |
|
tokenizer, batch_size, seq_length, is_pair, framework |
|
) |
|
|
|
if self.use_past: |
|
if not is_torch_available(): |
|
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") |
|
else: |
|
import torch |
|
batch, seqlen = common_inputs["input_ids"].shape |
|
|
|
past_key_values_length = seqlen + 2 |
|
num_encoder_layers, _ = self.num_layers |
|
num_encoder_attention_heads, _ = self.num_attention_heads |
|
past_shape = ( |
|
batch, |
|
num_encoder_attention_heads, |
|
past_key_values_length, |
|
self._config.hidden_size // num_encoder_attention_heads, |
|
) |
|
|
|
mask_dtype = common_inputs["attention_mask"].dtype |
|
common_inputs["attention_mask"] = torch.cat( |
|
[common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 |
|
) |
|
common_inputs["past_key_values"] = [ |
|
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers) |
|
] |
|
return common_inputs |
|
|
|
def _generate_dummy_inputs_for_sequence_classification_and_question_answering( |
|
self, |
|
tokenizer: PreTrainedTokenizer, |
|
batch_size: int = -1, |
|
seq_length: int = -1, |
|
is_pair: bool = False, |
|
framework: Optional[TensorType] = None, |
|
) -> Mapping[str, Any]: |
|
|
|
|
|
|
|
batch_size = compute_effective_axis_dimension( |
|
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 |
|
) |
|
|
|
|
|
token_to_add = tokenizer.num_special_tokens_to_add(is_pair) |
|
seq_length = compute_effective_axis_dimension( |
|
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add |
|
) |
|
|
|
|
|
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size |
|
common_inputs = dict(tokenizer(dummy_input, return_tensors=framework)) |
|
return common_inputs |
|
|
|
def generate_dummy_inputs( |
|
self, |
|
tokenizer: PreTrainedTokenizer, |
|
batch_size: int = -1, |
|
seq_length: int = -1, |
|
is_pair: bool = False, |
|
framework: Optional[TensorType] = None, |
|
) -> Mapping[str, Any]: |
|
if self.task in ["default", "seq2seq-lm"]: |
|
common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm( |
|
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework |
|
) |
|
|
|
elif self.task == "causal-lm": |
|
common_inputs = self._generate_dummy_inputs_for_causal_lm( |
|
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework |
|
) |
|
else: |
|
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( |
|
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework |
|
) |
|
|
|
return common_inputs |
|
|
|
def _flatten_past_key_values_(self, flattened_output, name, idx, t): |
|
if self.task in ["default", "seq2seq-lm"]: |
|
flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t) |
|
else: |
|
flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_( |
|
flattened_output, name, idx, t |
|
) |
|
|