|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Auto Tokenizer class.""" |
|
|
|
import importlib |
|
import json |
|
import os |
|
import warnings |
|
from collections import OrderedDict |
|
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union |
|
|
|
from ...configuration_utils import PretrainedConfig |
|
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code |
|
from ...tokenization_utils import PreTrainedTokenizer |
|
from ...tokenization_utils_base import TOKENIZER_CONFIG_FILE |
|
from ...utils import cached_file, extract_commit_hash, is_sentencepiece_available, is_tokenizers_available, logging |
|
from ..encoder_decoder import EncoderDecoderConfig |
|
from .auto_factory import _LazyAutoMapping |
|
from .configuration_auto import ( |
|
CONFIG_MAPPING_NAMES, |
|
AutoConfig, |
|
config_class_to_model_type, |
|
model_type_to_module_name, |
|
replace_list_option_in_docstrings, |
|
) |
|
|
|
|
|
if is_tokenizers_available(): |
|
from ...tokenization_utils_fast import PreTrainedTokenizerFast |
|
else: |
|
PreTrainedTokenizerFast = None |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
if TYPE_CHECKING: |
|
|
|
|
|
TOKENIZER_MAPPING_NAMES: OrderedDict[str, Tuple[Optional[str], Optional[str]]] = OrderedDict() |
|
else: |
|
TOKENIZER_MAPPING_NAMES = OrderedDict( |
|
[ |
|
( |
|
"albert", |
|
( |
|
"AlbertTokenizer" if is_sentencepiece_available() else None, |
|
"AlbertTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
("align", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), |
|
("bark", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), |
|
("bart", ("BartTokenizer", "BartTokenizerFast")), |
|
( |
|
"barthez", |
|
( |
|
"BarthezTokenizer" if is_sentencepiece_available() else None, |
|
"BarthezTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
("bartpho", ("BartphoTokenizer", None)), |
|
("bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), |
|
("bert-generation", ("BertGenerationTokenizer" if is_sentencepiece_available() else None, None)), |
|
("bert-japanese", ("BertJapaneseTokenizer", None)), |
|
("bertweet", ("BertweetTokenizer", None)), |
|
( |
|
"big_bird", |
|
( |
|
"BigBirdTokenizer" if is_sentencepiece_available() else None, |
|
"BigBirdTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
("bigbird_pegasus", ("PegasusTokenizer", "PegasusTokenizerFast" if is_tokenizers_available() else None)), |
|
("biogpt", ("BioGptTokenizer", None)), |
|
("blenderbot", ("BlenderbotTokenizer", "BlenderbotTokenizerFast")), |
|
("blenderbot-small", ("BlenderbotSmallTokenizer", None)), |
|
("blip", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), |
|
("blip-2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), |
|
("bloom", (None, "BloomTokenizerFast" if is_tokenizers_available() else None)), |
|
("bridgetower", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), |
|
("bros", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), |
|
("byt5", ("ByT5Tokenizer", None)), |
|
( |
|
"camembert", |
|
( |
|
"CamembertTokenizer" if is_sentencepiece_available() else None, |
|
"CamembertTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
("canine", ("CanineTokenizer", None)), |
|
("chinese_clip", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), |
|
( |
|
"clap", |
|
( |
|
"RobertaTokenizer", |
|
"RobertaTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
( |
|
"clip", |
|
( |
|
"CLIPTokenizer", |
|
"CLIPTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
( |
|
"clipseg", |
|
( |
|
"CLIPTokenizer", |
|
"CLIPTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
( |
|
"code_llama", |
|
( |
|
"CodeLlamaTokenizer" if is_sentencepiece_available() else None, |
|
"CodeLlamaTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
("codegen", ("CodeGenTokenizer", "CodeGenTokenizerFast" if is_tokenizers_available() else None)), |
|
("convbert", ("ConvBertTokenizer", "ConvBertTokenizerFast" if is_tokenizers_available() else None)), |
|
( |
|
"cpm", |
|
( |
|
"CpmTokenizer" if is_sentencepiece_available() else None, |
|
"CpmTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
("cpmant", ("CpmAntTokenizer", None)), |
|
("ctrl", ("CTRLTokenizer", None)), |
|
("data2vec-audio", ("Wav2Vec2CTCTokenizer", None)), |
|
("data2vec-text", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), |
|
("deberta", ("DebertaTokenizer", "DebertaTokenizerFast" if is_tokenizers_available() else None)), |
|
( |
|
"deberta-v2", |
|
( |
|
"DebertaV2Tokenizer" if is_sentencepiece_available() else None, |
|
"DebertaV2TokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
("distilbert", ("DistilBertTokenizer", "DistilBertTokenizerFast" if is_tokenizers_available() else None)), |
|
( |
|
"dpr", |
|
( |
|
"DPRQuestionEncoderTokenizer", |
|
"DPRQuestionEncoderTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
("electra", ("ElectraTokenizer", "ElectraTokenizerFast" if is_tokenizers_available() else None)), |
|
("ernie", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), |
|
("ernie_m", ("ErnieMTokenizer" if is_sentencepiece_available() else None, None)), |
|
("esm", ("EsmTokenizer", None)), |
|
("flaubert", ("FlaubertTokenizer", None)), |
|
("fnet", ("FNetTokenizer", "FNetTokenizerFast" if is_tokenizers_available() else None)), |
|
("fsmt", ("FSMTTokenizer", None)), |
|
("funnel", ("FunnelTokenizer", "FunnelTokenizerFast" if is_tokenizers_available() else None)), |
|
("git", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), |
|
("gpt-sw3", ("GPTSw3Tokenizer" if is_sentencepiece_available() else None, None)), |
|
("gpt2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), |
|
("gpt_bigcode", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), |
|
("gpt_neo", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), |
|
("gpt_neox", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), |
|
("gpt_neox_japanese", ("GPTNeoXJapaneseTokenizer", None)), |
|
("gptj", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), |
|
("gptsan-japanese", ("GPTSanJapaneseTokenizer", None)), |
|
("groupvit", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)), |
|
("herbert", ("HerbertTokenizer", "HerbertTokenizerFast" if is_tokenizers_available() else None)), |
|
("hubert", ("Wav2Vec2CTCTokenizer", None)), |
|
("ibert", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), |
|
("idefics", (None, "LlamaTokenizerFast" if is_tokenizers_available() else None)), |
|
("instructblip", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), |
|
("jukebox", ("JukeboxTokenizer", None)), |
|
("layoutlm", ("LayoutLMTokenizer", "LayoutLMTokenizerFast" if is_tokenizers_available() else None)), |
|
("layoutlmv2", ("LayoutLMv2Tokenizer", "LayoutLMv2TokenizerFast" if is_tokenizers_available() else None)), |
|
("layoutlmv3", ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" if is_tokenizers_available() else None)), |
|
("layoutxlm", ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast" if is_tokenizers_available() else None)), |
|
("led", ("LEDTokenizer", "LEDTokenizerFast" if is_tokenizers_available() else None)), |
|
("lilt", ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" if is_tokenizers_available() else None)), |
|
( |
|
"llama", |
|
( |
|
"LlamaTokenizer" if is_sentencepiece_available() else None, |
|
"LlamaTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
("longformer", ("LongformerTokenizer", "LongformerTokenizerFast" if is_tokenizers_available() else None)), |
|
( |
|
"longt5", |
|
( |
|
"T5Tokenizer" if is_sentencepiece_available() else None, |
|
"T5TokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
("luke", ("LukeTokenizer", None)), |
|
("lxmert", ("LxmertTokenizer", "LxmertTokenizerFast" if is_tokenizers_available() else None)), |
|
("m2m_100", ("M2M100Tokenizer" if is_sentencepiece_available() else None, None)), |
|
("marian", ("MarianTokenizer" if is_sentencepiece_available() else None, None)), |
|
( |
|
"mbart", |
|
( |
|
"MBartTokenizer" if is_sentencepiece_available() else None, |
|
"MBartTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
( |
|
"mbart50", |
|
( |
|
"MBart50Tokenizer" if is_sentencepiece_available() else None, |
|
"MBart50TokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
("mega", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), |
|
("megatron-bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), |
|
("mgp-str", ("MgpstrTokenizer", None)), |
|
( |
|
"mistral", |
|
( |
|
"LlamaTokenizer" if is_sentencepiece_available() else None, |
|
"LlamaTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
("mluke", ("MLukeTokenizer" if is_sentencepiece_available() else None, None)), |
|
("mobilebert", ("MobileBertTokenizer", "MobileBertTokenizerFast" if is_tokenizers_available() else None)), |
|
("mpnet", ("MPNetTokenizer", "MPNetTokenizerFast" if is_tokenizers_available() else None)), |
|
("mpt", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), |
|
("mra", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), |
|
( |
|
"mt5", |
|
( |
|
"MT5Tokenizer" if is_sentencepiece_available() else None, |
|
"MT5TokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
("musicgen", ("T5Tokenizer", "T5TokenizerFast" if is_tokenizers_available() else None)), |
|
("mvp", ("MvpTokenizer", "MvpTokenizerFast" if is_tokenizers_available() else None)), |
|
("nezha", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), |
|
( |
|
"nllb", |
|
( |
|
"NllbTokenizer" if is_sentencepiece_available() else None, |
|
"NllbTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
( |
|
"nllb-moe", |
|
( |
|
"NllbTokenizer" if is_sentencepiece_available() else None, |
|
"NllbTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
( |
|
"nystromformer", |
|
( |
|
"AlbertTokenizer" if is_sentencepiece_available() else None, |
|
"AlbertTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
("oneformer", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)), |
|
("openai-gpt", ("OpenAIGPTTokenizer", "OpenAIGPTTokenizerFast" if is_tokenizers_available() else None)), |
|
("opt", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), |
|
("owlvit", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)), |
|
( |
|
"pegasus", |
|
( |
|
"PegasusTokenizer" if is_sentencepiece_available() else None, |
|
"PegasusTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
( |
|
"pegasus_x", |
|
( |
|
"PegasusTokenizer" if is_sentencepiece_available() else None, |
|
"PegasusTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
( |
|
"perceiver", |
|
( |
|
"PerceiverTokenizer", |
|
None, |
|
), |
|
), |
|
( |
|
"persimmon", |
|
( |
|
"LlamaTokenizer" if is_sentencepiece_available() else None, |
|
"LlamaTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
("phobert", ("PhobertTokenizer", None)), |
|
("pix2struct", ("T5Tokenizer", "T5TokenizerFast" if is_tokenizers_available() else None)), |
|
("plbart", ("PLBartTokenizer" if is_sentencepiece_available() else None, None)), |
|
("prophetnet", ("ProphetNetTokenizer", None)), |
|
("qdqbert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), |
|
("rag", ("RagTokenizer", None)), |
|
("realm", ("RealmTokenizer", "RealmTokenizerFast" if is_tokenizers_available() else None)), |
|
( |
|
"reformer", |
|
( |
|
"ReformerTokenizer" if is_sentencepiece_available() else None, |
|
"ReformerTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
( |
|
"rembert", |
|
( |
|
"RemBertTokenizer" if is_sentencepiece_available() else None, |
|
"RemBertTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
("retribert", ("RetriBertTokenizer", "RetriBertTokenizerFast" if is_tokenizers_available() else None)), |
|
("roberta", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), |
|
( |
|
"roberta-prelayernorm", |
|
("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None), |
|
), |
|
("roc_bert", ("RoCBertTokenizer", None)), |
|
("roformer", ("RoFormerTokenizer", "RoFormerTokenizerFast" if is_tokenizers_available() else None)), |
|
("rwkv", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), |
|
("speech_to_text", ("Speech2TextTokenizer" if is_sentencepiece_available() else None, None)), |
|
("speech_to_text_2", ("Speech2Text2Tokenizer", None)), |
|
("speecht5", ("SpeechT5Tokenizer" if is_sentencepiece_available() else None, None)), |
|
("splinter", ("SplinterTokenizer", "SplinterTokenizerFast")), |
|
( |
|
"squeezebert", |
|
("SqueezeBertTokenizer", "SqueezeBertTokenizerFast" if is_tokenizers_available() else None), |
|
), |
|
( |
|
"switch_transformers", |
|
( |
|
"T5Tokenizer" if is_sentencepiece_available() else None, |
|
"T5TokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
( |
|
"t5", |
|
( |
|
"T5Tokenizer" if is_sentencepiece_available() else None, |
|
"T5TokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
("tapas", ("TapasTokenizer", None)), |
|
("tapex", ("TapexTokenizer", None)), |
|
("transfo-xl", ("TransfoXLTokenizer", None)), |
|
( |
|
"umt5", |
|
( |
|
"T5Tokenizer" if is_sentencepiece_available() else None, |
|
"T5TokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
("vilt", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), |
|
("visual_bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), |
|
("vits", ("VitsTokenizer", None)), |
|
("wav2vec2", ("Wav2Vec2CTCTokenizer", None)), |
|
("wav2vec2-conformer", ("Wav2Vec2CTCTokenizer", None)), |
|
("wav2vec2_phoneme", ("Wav2Vec2PhonemeCTCTokenizer", None)), |
|
("whisper", ("WhisperTokenizer", "WhisperTokenizerFast" if is_tokenizers_available() else None)), |
|
("xclip", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)), |
|
( |
|
"xglm", |
|
( |
|
"XGLMTokenizer" if is_sentencepiece_available() else None, |
|
"XGLMTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
("xlm", ("XLMTokenizer", None)), |
|
("xlm-prophetnet", ("XLMProphetNetTokenizer" if is_sentencepiece_available() else None, None)), |
|
( |
|
"xlm-roberta", |
|
( |
|
"XLMRobertaTokenizer" if is_sentencepiece_available() else None, |
|
"XLMRobertaTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
( |
|
"xlm-roberta-xl", |
|
( |
|
"XLMRobertaTokenizer" if is_sentencepiece_available() else None, |
|
"XLMRobertaTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
( |
|
"xlnet", |
|
( |
|
"XLNetTokenizer" if is_sentencepiece_available() else None, |
|
"XLNetTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
( |
|
"xmod", |
|
( |
|
"XLMRobertaTokenizer" if is_sentencepiece_available() else None, |
|
"XLMRobertaTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
( |
|
"yoso", |
|
( |
|
"AlbertTokenizer" if is_sentencepiece_available() else None, |
|
"AlbertTokenizerFast" if is_tokenizers_available() else None, |
|
), |
|
), |
|
] |
|
) |
|
|
|
TOKENIZER_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TOKENIZER_MAPPING_NAMES) |
|
|
|
CONFIG_TO_TYPE = {v: k for k, v in CONFIG_MAPPING_NAMES.items()} |
|
|
|
|
|
def tokenizer_class_from_name(class_name: str): |
|
if class_name == "PreTrainedTokenizerFast": |
|
return PreTrainedTokenizerFast |
|
|
|
for module_name, tokenizers in TOKENIZER_MAPPING_NAMES.items(): |
|
if class_name in tokenizers: |
|
module_name = model_type_to_module_name(module_name) |
|
|
|
module = importlib.import_module(f".{module_name}", "transformers.models") |
|
try: |
|
return getattr(module, class_name) |
|
except AttributeError: |
|
continue |
|
|
|
for config, tokenizers in TOKENIZER_MAPPING._extra_content.items(): |
|
for tokenizer in tokenizers: |
|
if getattr(tokenizer, "__name__", None) == class_name: |
|
return tokenizer |
|
|
|
|
|
|
|
main_module = importlib.import_module("transformers") |
|
if hasattr(main_module, class_name): |
|
return getattr(main_module, class_name) |
|
|
|
return None |
|
|
|
|
|
def get_tokenizer_config( |
|
pretrained_model_name_or_path: Union[str, os.PathLike], |
|
cache_dir: Optional[Union[str, os.PathLike]] = None, |
|
force_download: bool = False, |
|
resume_download: bool = False, |
|
proxies: Optional[Dict[str, str]] = None, |
|
token: Optional[Union[bool, str]] = None, |
|
revision: Optional[str] = None, |
|
local_files_only: bool = False, |
|
subfolder: str = "", |
|
**kwargs, |
|
): |
|
""" |
|
Loads the tokenizer configuration from a pretrained model tokenizer configuration. |
|
|
|
Args: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`): |
|
This can be either: |
|
|
|
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on |
|
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced |
|
under a user or organization name, like `dbmdz/bert-base-german-cased`. |
|
- a path to a *directory* containing a configuration file saved using the |
|
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. |
|
|
|
cache_dir (`str` or `os.PathLike`, *optional*): |
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard |
|
cache should not be used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force to (re-)download the configuration files and override the cached versions if they |
|
exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. |
|
token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated |
|
when running `huggingface-cli login` (stored in `~/.huggingface`). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
If `True`, will only try to load the tokenizer configuration from local files. |
|
subfolder (`str`, *optional*, defaults to `""`): |
|
In case the tokenizer config is located inside a subfolder of the model repo on huggingface.co, you can |
|
specify the folder name here. |
|
|
|
<Tip> |
|
|
|
Passing `token=True` is required when you want to use a private model. |
|
|
|
</Tip> |
|
|
|
Returns: |
|
`Dict`: The configuration of the tokenizer. |
|
|
|
Examples: |
|
|
|
```python |
|
# Download configuration from huggingface.co and cache. |
|
tokenizer_config = get_tokenizer_config("bert-base-uncased") |
|
# This model does not have a tokenizer config so the result will be an empty dict. |
|
tokenizer_config = get_tokenizer_config("xlm-roberta-base") |
|
|
|
# Save a pretrained tokenizer locally and you can reload its config |
|
from transformers import AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") |
|
tokenizer.save_pretrained("tokenizer-test") |
|
tokenizer_config = get_tokenizer_config("tokenizer-test") |
|
```""" |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if token is not None: |
|
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") |
|
token = use_auth_token |
|
|
|
commit_hash = kwargs.get("_commit_hash", None) |
|
resolved_config_file = cached_file( |
|
pretrained_model_name_or_path, |
|
TOKENIZER_CONFIG_FILE, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
token=token, |
|
revision=revision, |
|
local_files_only=local_files_only, |
|
subfolder=subfolder, |
|
_raise_exceptions_for_missing_entries=False, |
|
_raise_exceptions_for_connection_errors=False, |
|
_commit_hash=commit_hash, |
|
) |
|
if resolved_config_file is None: |
|
logger.info("Could not locate the tokenizer configuration file, will try to use the model config instead.") |
|
return {} |
|
commit_hash = extract_commit_hash(resolved_config_file, commit_hash) |
|
|
|
with open(resolved_config_file, encoding="utf-8") as reader: |
|
result = json.load(reader) |
|
result["_commit_hash"] = commit_hash |
|
return result |
|
|
|
|
|
class AutoTokenizer: |
|
r""" |
|
This is a generic tokenizer class that will be instantiated as one of the tokenizer classes of the library when |
|
created with the [`AutoTokenizer.from_pretrained`] class method. |
|
|
|
This class cannot be instantiated directly using `__init__()` (throws an error). |
|
""" |
|
|
|
def __init__(self): |
|
raise EnvironmentError( |
|
"AutoTokenizer is designed to be instantiated " |
|
"using the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` method." |
|
) |
|
|
|
@classmethod |
|
@replace_list_option_in_docstrings(TOKENIZER_MAPPING_NAMES) |
|
def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs): |
|
r""" |
|
Instantiate one of the tokenizer classes of the library from a pretrained model vocabulary. |
|
|
|
The tokenizer class to instantiate is selected based on the `model_type` property of the config object (either |
|
passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by |
|
falling back to using pattern matching on `pretrained_model_name_or_path`: |
|
|
|
List options |
|
|
|
Params: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`): |
|
Can be either: |
|
|
|
- A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co. |
|
Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a |
|
user or organization name, like `dbmdz/bert-base-german-cased`. |
|
- A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved |
|
using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. |
|
- A path or url to a single saved vocabulary file if and only if the tokenizer only requires a |
|
single vocabulary file (like Bert or XLNet), e.g.: `./my_model_directory/vocab.txt`. (Not |
|
applicable to all derived classes) |
|
inputs (additional positional arguments, *optional*): |
|
Will be passed along to the Tokenizer `__init__()` method. |
|
config ([`PretrainedConfig`], *optional*) |
|
The configuration object used to determine the tokenizer class to instantiate. |
|
cache_dir (`str` or `os.PathLike`, *optional*): |
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the |
|
standard cache should not be used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download the model weights and configuration files and override the |
|
cached versions if they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received files. Will attempt to resume the download if such a |
|
file exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
subfolder (`str`, *optional*): |
|
In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for |
|
facebook/rag-token-base), specify it here. |
|
use_fast (`bool`, *optional*, defaults to `True`): |
|
Use a [fast Rust-based tokenizer](https://huggingface.co/docs/tokenizers/index) if it is supported for |
|
a given model. If a fast tokenizer is not available for a given model, a normal Python-based tokenizer |
|
is returned instead. |
|
tokenizer_type (`str`, *optional*): |
|
Tokenizer type to be loaded. |
|
trust_remote_code (`bool`, *optional*, defaults to `False`): |
|
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option |
|
should only be set to `True` for repositories you trust and in which you have read the code, as it will |
|
execute code present on the Hub on your local machine. |
|
kwargs (additional keyword arguments, *optional*): |
|
Will be passed to the Tokenizer `__init__()` method. Can be used to set special tokens like |
|
`bos_token`, `eos_token`, `unk_token`, `sep_token`, `pad_token`, `cls_token`, `mask_token`, |
|
`additional_special_tokens`. See parameters in the `__init__()` for more details. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer |
|
|
|
>>> # Download vocabulary from huggingface.co and cache. |
|
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") |
|
|
|
>>> # Download vocabulary from huggingface.co (user-uploaded) and cache. |
|
>>> tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-cased") |
|
|
|
>>> # If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*) |
|
>>> # tokenizer = AutoTokenizer.from_pretrained("./test/bert_saved_model/") |
|
|
|
>>> # Download vocabulary from huggingface.co and define model-specific arguments |
|
>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base", add_prefix_space=True) |
|
```""" |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if kwargs.get("token", None) is not None: |
|
raise ValueError( |
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." |
|
) |
|
kwargs["token"] = use_auth_token |
|
|
|
config = kwargs.pop("config", None) |
|
kwargs["_from_auto"] = True |
|
|
|
use_fast = kwargs.pop("use_fast", True) |
|
tokenizer_type = kwargs.pop("tokenizer_type", None) |
|
trust_remote_code = kwargs.pop("trust_remote_code", None) |
|
|
|
|
|
if tokenizer_type is not None: |
|
tokenizer_class = None |
|
tokenizer_class_tuple = TOKENIZER_MAPPING_NAMES.get(tokenizer_type, None) |
|
|
|
if tokenizer_class_tuple is None: |
|
raise ValueError( |
|
f"Passed `tokenizer_type` {tokenizer_type} does not exist. `tokenizer_type` should be one of " |
|
f"{', '.join(c for c in TOKENIZER_MAPPING_NAMES.keys())}." |
|
) |
|
|
|
tokenizer_class_name, tokenizer_fast_class_name = tokenizer_class_tuple |
|
|
|
if use_fast: |
|
if tokenizer_fast_class_name is not None: |
|
tokenizer_class = tokenizer_class_from_name(tokenizer_fast_class_name) |
|
else: |
|
logger.warning( |
|
"`use_fast` is set to `True` but the tokenizer class does not have a fast version. " |
|
" Falling back to the slow version." |
|
) |
|
if tokenizer_class is None: |
|
tokenizer_class = tokenizer_class_from_name(tokenizer_class_name) |
|
|
|
if tokenizer_class is None: |
|
raise ValueError(f"Tokenizer class {tokenizer_class_name} is not currently imported.") |
|
|
|
return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) |
|
|
|
|
|
tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs) |
|
if "_commit_hash" in tokenizer_config: |
|
kwargs["_commit_hash"] = tokenizer_config["_commit_hash"] |
|
config_tokenizer_class = tokenizer_config.get("tokenizer_class") |
|
tokenizer_auto_map = None |
|
if "auto_map" in tokenizer_config: |
|
if isinstance(tokenizer_config["auto_map"], (tuple, list)): |
|
|
|
tokenizer_auto_map = tokenizer_config["auto_map"] |
|
else: |
|
tokenizer_auto_map = tokenizer_config["auto_map"].get("AutoTokenizer", None) |
|
|
|
|
|
if config_tokenizer_class is None: |
|
if not isinstance(config, PretrainedConfig): |
|
config = AutoConfig.from_pretrained( |
|
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs |
|
) |
|
config_tokenizer_class = config.tokenizer_class |
|
if hasattr(config, "auto_map") and "AutoTokenizer" in config.auto_map: |
|
tokenizer_auto_map = config.auto_map["AutoTokenizer"] |
|
|
|
has_remote_code = tokenizer_auto_map is not None |
|
has_local_code = config_tokenizer_class is not None or type(config) in TOKENIZER_MAPPING |
|
trust_remote_code = resolve_trust_remote_code( |
|
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code |
|
) |
|
|
|
if has_remote_code and trust_remote_code: |
|
if use_fast and tokenizer_auto_map[1] is not None: |
|
class_ref = tokenizer_auto_map[1] |
|
else: |
|
class_ref = tokenizer_auto_map[0] |
|
tokenizer_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs) |
|
_ = kwargs.pop("code_revision", None) |
|
if os.path.isdir(pretrained_model_name_or_path): |
|
tokenizer_class.register_for_auto_class() |
|
return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) |
|
elif config_tokenizer_class is not None: |
|
tokenizer_class = None |
|
if use_fast and not config_tokenizer_class.endswith("Fast"): |
|
tokenizer_class_candidate = f"{config_tokenizer_class}Fast" |
|
tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate) |
|
if tokenizer_class is None: |
|
tokenizer_class_candidate = config_tokenizer_class |
|
tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate) |
|
if tokenizer_class is None: |
|
raise ValueError( |
|
f"Tokenizer class {tokenizer_class_candidate} does not exist or is not currently imported." |
|
) |
|
return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) |
|
|
|
|
|
|
|
if isinstance(config, EncoderDecoderConfig): |
|
if type(config.decoder) is not type(config.encoder): |
|
logger.warning( |
|
f"The encoder model config class: {config.encoder.__class__} is different from the decoder model " |
|
f"config class: {config.decoder.__class__}. It is not recommended to use the " |
|
"`AutoTokenizer.from_pretrained()` method in this case. Please use the encoder and decoder " |
|
"specific tokenizer classes." |
|
) |
|
config = config.encoder |
|
|
|
model_type = config_class_to_model_type(type(config).__name__) |
|
if model_type is not None: |
|
tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type(config)] |
|
if tokenizer_class_fast and (use_fast or tokenizer_class_py is None): |
|
return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) |
|
else: |
|
if tokenizer_class_py is not None: |
|
return tokenizer_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) |
|
else: |
|
raise ValueError( |
|
"This tokenizer cannot be instantiated. Please make sure you have `sentencepiece` installed " |
|
"in order to use this tokenizer." |
|
) |
|
|
|
raise ValueError( |
|
f"Unrecognized configuration class {config.__class__} to build an AutoTokenizer.\n" |
|
f"Model type should be one of {', '.join(c.__name__ for c in TOKENIZER_MAPPING.keys())}." |
|
) |
|
|
|
def register(config_class, slow_tokenizer_class=None, fast_tokenizer_class=None, exist_ok=False): |
|
""" |
|
Register a new tokenizer in this mapping. |
|
|
|
|
|
Args: |
|
config_class ([`PretrainedConfig`]): |
|
The configuration corresponding to the model to register. |
|
slow_tokenizer_class ([`PretrainedTokenizer`], *optional*): |
|
The slow tokenizer to register. |
|
fast_tokenizer_class ([`PretrainedTokenizerFast`], *optional*): |
|
The fast tokenizer to register. |
|
""" |
|
if slow_tokenizer_class is None and fast_tokenizer_class is None: |
|
raise ValueError("You need to pass either a `slow_tokenizer_class` or a `fast_tokenizer_class") |
|
if slow_tokenizer_class is not None and issubclass(slow_tokenizer_class, PreTrainedTokenizerFast): |
|
raise ValueError("You passed a fast tokenizer in the `slow_tokenizer_class`.") |
|
if fast_tokenizer_class is not None and issubclass(fast_tokenizer_class, PreTrainedTokenizer): |
|
raise ValueError("You passed a slow tokenizer in the `fast_tokenizer_class`.") |
|
|
|
if ( |
|
slow_tokenizer_class is not None |
|
and fast_tokenizer_class is not None |
|
and issubclass(fast_tokenizer_class, PreTrainedTokenizerFast) |
|
and fast_tokenizer_class.slow_tokenizer_class != slow_tokenizer_class |
|
): |
|
raise ValueError( |
|
"The fast tokenizer class you are passing has a `slow_tokenizer_class` attribute that is not " |
|
"consistent with the slow tokenizer class you passed (fast tokenizer has " |
|
f"{fast_tokenizer_class.slow_tokenizer_class} and you passed {slow_tokenizer_class}. Fix one of those " |
|
"so they match!" |
|
) |
|
|
|
|
|
if config_class in TOKENIZER_MAPPING._extra_content: |
|
existing_slow, existing_fast = TOKENIZER_MAPPING[config_class] |
|
if slow_tokenizer_class is None: |
|
slow_tokenizer_class = existing_slow |
|
if fast_tokenizer_class is None: |
|
fast_tokenizer_class = existing_fast |
|
|
|
TOKENIZER_MAPPING.register(config_class, (slow_tokenizer_class, fast_tokenizer_class), exist_ok=exist_ok) |
|
|