|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch ALIGN model.""" |
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import Any, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
|
|
from ...activations import ACT2FN |
|
from ...modeling_outputs import ( |
|
BaseModelOutputWithNoAttention, |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
BaseModelOutputWithPoolingAndNoAttention, |
|
) |
|
from ...modeling_utils import PreTrainedModel |
|
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer |
|
from ...utils import ( |
|
ModelOutput, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from .configuration_align import AlignConfig, AlignTextConfig, AlignVisionConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "kakaobrain/align-base" |
|
_CONFIG_FOR_DOC = "AlignConfig" |
|
|
|
|
|
ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"kakaobrain/align-base", |
|
|
|
] |
|
|
|
|
|
ALIGN_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`AlignConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
ALIGN_TEXT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, |
|
1]`: |
|
|
|
- 0 corresponds to a *sentence A* token, |
|
- 1 corresponds to a *sentence B* token. |
|
|
|
[What are token type IDs?](../glossary#token-type-ids) |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
ALIGN_VISION_INPUTS_DOCSTRING = r""" |
|
Args: |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using |
|
[`AutoImageProcessor`]. See [`EfficientNetImageProcessor.__call__`] for details. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
ALIGN_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, |
|
1]`: |
|
|
|
- 0 corresponds to a *sentence A* token, |
|
- 1 corresponds to a *sentence B* token. |
|
|
|
[What are token type IDs?](../glossary#token-type-ids) |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using |
|
[`AutoImageProcessor`]. See [`EfficientNetImageProcessor.__call__`] for details. |
|
return_loss (`bool`, *optional*): |
|
Whether or not to return the contrastive loss. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@dataclass |
|
class AlignVisionModelOutput(ModelOutput): |
|
""" |
|
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. |
|
|
|
Args: |
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): |
|
The image embeddings obtained by applying the projection layer to the pooler_output. |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
""" |
|
|
|
image_embeds: Optional[torch.FloatTensor] = None |
|
last_hidden_state: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class AlignTextModelOutput(ModelOutput): |
|
""" |
|
Base class for text model's outputs that also contains a pooling of the last hidden states. |
|
|
|
Args: |
|
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): |
|
The text embeddings obtained by applying the projection layer to the pooler_output. |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
text_embeds: Optional[torch.FloatTensor] = None |
|
last_hidden_state: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class AlignOutput(ModelOutput): |
|
""" |
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): |
|
Contrastive loss for image-text similarity. |
|
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): |
|
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text |
|
similarity scores. |
|
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): |
|
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image |
|
similarity scores. |
|
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): |
|
The text embeddings obtained by applying the projection layer to the pooled output of [`AlignTextModel`]. |
|
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): |
|
The output of [`AlignVisionModel`]. |
|
text_model_output(`BaseModelOutputWithPoolingAndCrossAttentions`): |
|
The output of the [`AlignTextModel`]. |
|
vision_model_output(`BaseModelOutputWithPoolingAndNoAttention`): |
|
The output of the [`AlignVisionModel`]. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits_per_image: torch.FloatTensor = None |
|
logits_per_text: torch.FloatTensor = None |
|
text_embeds: torch.FloatTensor = None |
|
image_embeds: torch.FloatTensor = None |
|
text_model_output: BaseModelOutputWithPoolingAndCrossAttentions = None |
|
vision_model_output: BaseModelOutputWithPoolingAndNoAttention = None |
|
|
|
def to_tuple(self) -> Tuple[Any]: |
|
return tuple( |
|
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() |
|
for k in self.keys() |
|
) |
|
|
|
|
|
|
|
|
|
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: |
|
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device), label_smoothing=0.1) |
|
|
|
|
|
def align_loss(similarity: torch.Tensor) -> torch.Tensor: |
|
caption_loss = contrastive_loss(similarity) |
|
image_loss = contrastive_loss(similarity.t()) |
|
return (caption_loss + image_loss) / 2.0 |
|
|
|
|
|
|
|
def round_filters(config: AlignVisionConfig, num_channels: int): |
|
r""" |
|
Round number of filters based on depth multiplier. |
|
""" |
|
divisor = config.depth_divisor |
|
num_channels *= config.width_coefficient |
|
new_dim = max(divisor, int(num_channels + divisor / 2) // divisor * divisor) |
|
|
|
|
|
if new_dim < 0.9 * num_channels: |
|
new_dim += divisor |
|
|
|
return int(new_dim) |
|
|
|
|
|
|
|
def correct_pad(kernel_size: Union[int, Tuple], adjust: bool = True): |
|
r""" |
|
Utility function to get the tuple padding value for the depthwise convolution. |
|
|
|
Args: |
|
kernel_size (`int` or `tuple`): |
|
Kernel size of the convolution layers. |
|
adjust (`bool`, *optional*, defaults to `True`): |
|
Adjusts padding value to apply to right and bottom sides of the input. |
|
""" |
|
if isinstance(kernel_size, int): |
|
kernel_size = (kernel_size, kernel_size) |
|
|
|
correct = (kernel_size[0] // 2, kernel_size[1] // 2) |
|
if adjust: |
|
return (correct[1] - 1, correct[1], correct[0] - 1, correct[0]) |
|
else: |
|
return (correct[1], correct[1], correct[0], correct[0]) |
|
|
|
|
|
|
|
class AlignVisionEmbeddings(nn.Module): |
|
r""" |
|
A module that corresponds to the stem module of the original work. |
|
""" |
|
|
|
def __init__(self, config: AlignVisionConfig): |
|
super().__init__() |
|
|
|
self.out_dim = round_filters(config, 32) |
|
self.padding = nn.ZeroPad2d(padding=(0, 1, 0, 1)) |
|
self.convolution = nn.Conv2d( |
|
config.num_channels, self.out_dim, kernel_size=3, stride=2, padding="valid", bias=False |
|
) |
|
self.batchnorm = nn.BatchNorm2d(self.out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum) |
|
self.activation = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: |
|
features = self.padding(pixel_values) |
|
features = self.convolution(features) |
|
features = self.batchnorm(features) |
|
features = self.activation(features) |
|
|
|
return features |
|
|
|
|
|
|
|
class AlignVisionDepthwiseConv2d(nn.Conv2d): |
|
def __init__( |
|
self, |
|
in_channels, |
|
depth_multiplier=1, |
|
kernel_size=3, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
bias=True, |
|
padding_mode="zeros", |
|
): |
|
out_channels = in_channels * depth_multiplier |
|
super().__init__( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
groups=in_channels, |
|
bias=bias, |
|
padding_mode=padding_mode, |
|
) |
|
|
|
|
|
|
|
class AlignVisionExpansionLayer(nn.Module): |
|
r""" |
|
This corresponds to the expansion phase of each block in the original implementation. |
|
""" |
|
|
|
def __init__(self, config: AlignVisionConfig, in_dim: int, out_dim: int, stride: int): |
|
super().__init__() |
|
self.expand_conv = nn.Conv2d( |
|
in_channels=in_dim, |
|
out_channels=out_dim, |
|
kernel_size=1, |
|
padding="same", |
|
bias=False, |
|
) |
|
self.expand_bn = nn.BatchNorm2d(num_features=out_dim, eps=config.batch_norm_eps) |
|
self.expand_act = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: |
|
|
|
hidden_states = self.expand_conv(hidden_states) |
|
hidden_states = self.expand_bn(hidden_states) |
|
hidden_states = self.expand_act(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
class AlignVisionDepthwiseLayer(nn.Module): |
|
r""" |
|
This corresponds to the depthwise convolution phase of each block in the original implementation. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
config: AlignVisionConfig, |
|
in_dim: int, |
|
stride: int, |
|
kernel_size: int, |
|
adjust_padding: bool, |
|
): |
|
super().__init__() |
|
self.stride = stride |
|
conv_pad = "valid" if self.stride == 2 else "same" |
|
padding = correct_pad(kernel_size, adjust=adjust_padding) |
|
|
|
self.depthwise_conv_pad = nn.ZeroPad2d(padding=padding) |
|
self.depthwise_conv = AlignVisionDepthwiseConv2d( |
|
in_dim, kernel_size=kernel_size, stride=stride, padding=conv_pad, bias=False |
|
) |
|
self.depthwise_norm = nn.BatchNorm2d( |
|
num_features=in_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum |
|
) |
|
self.depthwise_act = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: |
|
|
|
if self.stride == 2: |
|
hidden_states = self.depthwise_conv_pad(hidden_states) |
|
|
|
hidden_states = self.depthwise_conv(hidden_states) |
|
hidden_states = self.depthwise_norm(hidden_states) |
|
hidden_states = self.depthwise_act(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
class AlignVisionSqueezeExciteLayer(nn.Module): |
|
r""" |
|
This corresponds to the Squeeze and Excitement phase of each block in the original implementation. |
|
""" |
|
|
|
def __init__(self, config: AlignVisionConfig, in_dim: int, expand_dim: int, expand: bool = False): |
|
super().__init__() |
|
self.dim = expand_dim if expand else in_dim |
|
self.dim_se = max(1, int(in_dim * config.squeeze_expansion_ratio)) |
|
|
|
self.squeeze = nn.AdaptiveAvgPool2d(output_size=1) |
|
self.reduce = nn.Conv2d( |
|
in_channels=self.dim, |
|
out_channels=self.dim_se, |
|
kernel_size=1, |
|
padding="same", |
|
) |
|
self.expand = nn.Conv2d( |
|
in_channels=self.dim_se, |
|
out_channels=self.dim, |
|
kernel_size=1, |
|
padding="same", |
|
) |
|
self.act_reduce = ACT2FN[config.hidden_act] |
|
self.act_expand = nn.Sigmoid() |
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: |
|
inputs = hidden_states |
|
hidden_states = self.squeeze(hidden_states) |
|
hidden_states = self.reduce(hidden_states) |
|
hidden_states = self.act_reduce(hidden_states) |
|
|
|
hidden_states = self.expand(hidden_states) |
|
hidden_states = self.act_expand(hidden_states) |
|
hidden_states = torch.mul(inputs, hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class AlignVisionFinalBlockLayer(nn.Module): |
|
r""" |
|
This corresponds to the final phase of each block in the original implementation. |
|
""" |
|
|
|
def __init__( |
|
self, config: AlignVisionConfig, in_dim: int, out_dim: int, stride: int, drop_rate: float, id_skip: bool |
|
): |
|
super().__init__() |
|
self.apply_dropout = stride == 1 and not id_skip |
|
self.project_conv = nn.Conv2d( |
|
in_channels=in_dim, |
|
out_channels=out_dim, |
|
kernel_size=1, |
|
padding="same", |
|
bias=False, |
|
) |
|
self.project_bn = nn.BatchNorm2d( |
|
num_features=out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum |
|
) |
|
self.dropout = nn.Dropout(p=drop_rate) |
|
|
|
def forward(self, embeddings: torch.FloatTensor, hidden_states: torch.FloatTensor) -> torch.Tensor: |
|
hidden_states = self.project_conv(hidden_states) |
|
hidden_states = self.project_bn(hidden_states) |
|
|
|
if self.apply_dropout: |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = hidden_states + embeddings |
|
|
|
return hidden_states |
|
|
|
|
|
class AlignVisionBlock(nn.Module): |
|
r""" |
|
This corresponds to the block module of original the EfficientNet vision encoder implementation. |
|
|
|
Args: |
|
config ([`AlignVisionConfig`]): |
|
Model configuration class. |
|
in_dim (`int`): |
|
Number of input channels. |
|
out_dim (`int`): |
|
Number of output channels. |
|
stride (`int`): |
|
Stride size to be used in convolution layers. |
|
expand_ratio (`int`): |
|
Expand ratio to set the output dimensions for the expansion and squeeze-excite layers. |
|
kernel_size (`int`): |
|
Kernel size for the depthwise convolution layer. |
|
drop_rate (`float`): |
|
Dropout rate to be used in the final phase of each block. |
|
id_skip (`bool`): |
|
Whether to apply dropout and sum the final hidden states with the input embeddings during the final phase |
|
of each block. Set to `True` for the first block of each stage. |
|
adjust_padding (`bool`): |
|
Whether to apply padding to only right and bottom side of the input kernel before the depthwise convolution |
|
operation, set to `True` for inputs with odd input sizes. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
config: AlignVisionConfig, |
|
in_dim: int, |
|
out_dim: int, |
|
stride: int, |
|
expand_ratio: int, |
|
kernel_size: int, |
|
drop_rate: float, |
|
id_skip: bool, |
|
adjust_padding: bool, |
|
): |
|
super().__init__() |
|
self.expand_ratio = expand_ratio |
|
self.expand = True if self.expand_ratio != 1 else False |
|
expand_in_dim = in_dim * expand_ratio |
|
|
|
if self.expand: |
|
self.expansion = AlignVisionExpansionLayer( |
|
config=config, in_dim=in_dim, out_dim=expand_in_dim, stride=stride |
|
) |
|
|
|
self.depthwise_conv = AlignVisionDepthwiseLayer( |
|
config=config, |
|
in_dim=expand_in_dim if self.expand else in_dim, |
|
stride=stride, |
|
kernel_size=kernel_size, |
|
adjust_padding=adjust_padding, |
|
) |
|
self.squeeze_excite = AlignVisionSqueezeExciteLayer( |
|
config=config, in_dim=in_dim, expand_dim=expand_in_dim, expand=self.expand |
|
) |
|
self.projection = AlignVisionFinalBlockLayer( |
|
config=config, |
|
in_dim=expand_in_dim if self.expand else in_dim, |
|
out_dim=out_dim, |
|
stride=stride, |
|
drop_rate=drop_rate, |
|
id_skip=id_skip, |
|
) |
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: |
|
embeddings = hidden_states |
|
|
|
if self.expand_ratio != 1: |
|
hidden_states = self.expansion(hidden_states) |
|
hidden_states = self.depthwise_conv(hidden_states) |
|
|
|
|
|
hidden_states = self.squeeze_excite(hidden_states) |
|
hidden_states = self.projection(embeddings, hidden_states) |
|
return hidden_states |
|
|
|
|
|
class AlignVisionEncoder(nn.Module): |
|
r""" |
|
Forward propogates the embeddings through each vision encoder (EfficientNet) block. |
|
|
|
Args: |
|
config ([`AlignVisionConfig`]): |
|
Model configuration class. |
|
""" |
|
|
|
def __init__(self, config: AlignVisionConfig): |
|
super().__init__() |
|
self.depth_coefficient = config.depth_coefficient |
|
|
|
def round_repeats(repeats): |
|
|
|
return int(math.ceil(self.depth_coefficient * repeats)) |
|
|
|
num_base_blocks = len(config.in_channels) |
|
num_blocks = sum(round_repeats(n) for n in config.num_block_repeats) |
|
|
|
curr_block_num = 0 |
|
blocks = [] |
|
for i in range(num_base_blocks): |
|
in_dim = round_filters(config, config.in_channels[i]) |
|
out_dim = round_filters(config, config.out_channels[i]) |
|
stride = config.strides[i] |
|
kernel_size = config.kernel_sizes[i] |
|
expand_ratio = config.expand_ratios[i] |
|
|
|
for j in range(round_repeats(config.num_block_repeats[i])): |
|
id_skip = True if j == 0 else False |
|
stride = 1 if j > 0 else stride |
|
in_dim = out_dim if j > 0 else in_dim |
|
adjust_padding = False if curr_block_num in config.depthwise_padding else True |
|
drop_rate = config.drop_connect_rate * curr_block_num / num_blocks |
|
|
|
block = AlignVisionBlock( |
|
config=config, |
|
in_dim=in_dim, |
|
out_dim=out_dim, |
|
stride=stride, |
|
kernel_size=kernel_size, |
|
expand_ratio=expand_ratio, |
|
drop_rate=drop_rate, |
|
id_skip=id_skip, |
|
adjust_padding=adjust_padding, |
|
) |
|
blocks.append(block) |
|
curr_block_num += 1 |
|
|
|
self.blocks = nn.ModuleList(blocks) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
output_hidden_states: Optional[bool] = False, |
|
return_dict: Optional[bool] = True, |
|
) -> BaseModelOutputWithPoolingAndNoAttention: |
|
all_hidden_states = (hidden_states,) if output_hidden_states else None |
|
|
|
for block in self.blocks: |
|
hidden_states = block(hidden_states) |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) |
|
|
|
return BaseModelOutputWithNoAttention( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
) |
|
|
|
|
|
|
|
class AlignTextEmbeddings(nn.Module): |
|
"""Construct the embeddings from word, position and token_type embeddings.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) |
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) |
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) |
|
|
|
|
|
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") |
|
self.register_buffer( |
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False |
|
) |
|
self.register_buffer( |
|
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
past_key_values_length: int = 0, |
|
) -> torch.Tensor: |
|
if input_ids is not None: |
|
input_shape = input_ids.size() |
|
else: |
|
input_shape = inputs_embeds.size()[:-1] |
|
|
|
seq_length = input_shape[1] |
|
|
|
if position_ids is None: |
|
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] |
|
|
|
|
|
|
|
|
|
if token_type_ids is None: |
|
if hasattr(self, "token_type_ids"): |
|
buffered_token_type_ids = self.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
|
|
embeddings = inputs_embeds + token_type_embeddings |
|
if self.position_embedding_type == "absolute": |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings += position_embeddings |
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
|
|
|
|
class AlignTextSelfAttention(nn.Module): |
|
def __init__(self, config, position_embedding_type=None): |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): |
|
raise ValueError( |
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " |
|
f"heads ({config.num_attention_heads})" |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
self.position_embedding_type = position_embedding_type or getattr( |
|
config, "position_embedding_type", "absolute" |
|
) |
|
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) |
|
|
|
self.is_decoder = config.is_decoder |
|
|
|
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
|
|
|
|
|
|
is_cross_attention = encoder_hidden_states is not None |
|
|
|
if is_cross_attention and past_key_value is not None: |
|
|
|
key_layer = past_key_value[0] |
|
value_layer = past_key_value[1] |
|
attention_mask = encoder_attention_mask |
|
elif is_cross_attention: |
|
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) |
|
attention_mask = encoder_attention_mask |
|
elif past_key_value is not None: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) |
|
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) |
|
else: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
use_cache = past_key_value is not None |
|
if self.is_decoder: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_key_value = (key_layer, value_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": |
|
query_length, key_length = query_layer.shape[2], key_layer.shape[2] |
|
if use_cache: |
|
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( |
|
-1, 1 |
|
) |
|
else: |
|
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) |
|
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) |
|
distance = position_ids_l - position_ids_r |
|
|
|
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) |
|
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) |
|
|
|
if self.position_embedding_type == "relative_key": |
|
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) |
|
attention_scores = attention_scores + relative_position_scores |
|
elif self.position_embedding_type == "relative_key_query": |
|
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) |
|
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) |
|
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key |
|
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
if attention_mask is not None: |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(new_context_layer_shape) |
|
|
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
|
|
if self.is_decoder: |
|
outputs = outputs + (past_key_value,) |
|
return outputs |
|
|
|
|
|
|
|
class AlignTextSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
|
|
class AlignTextAttention(nn.Module): |
|
def __init__(self, config, position_embedding_type=None): |
|
super().__init__() |
|
self.self = AlignTextSelfAttention(config, position_embedding_type=position_embedding_type) |
|
self.output = AlignTextSelfOutput(config) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads |
|
) |
|
|
|
|
|
self.self.query = prune_linear_layer(self.self.query, index) |
|
self.self.key = prune_linear_layer(self.self.key, index) |
|
self.self.value = prune_linear_layer(self.self.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) |
|
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
self_outputs = self.self( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
outputs = (attention_output,) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
|
|
class AlignTextIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
return hidden_states |
|
|
|
|
|
|
|
class AlignTextOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
|
|
class AlignTextLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = AlignTextAttention(config) |
|
self.is_decoder = config.is_decoder |
|
self.add_cross_attention = config.add_cross_attention |
|
if self.add_cross_attention: |
|
if not self.is_decoder: |
|
raise ValueError(f"{self} should be used as a decoder model if cross attention is added") |
|
self.crossattention = AlignTextAttention(config, position_embedding_type="absolute") |
|
self.intermediate = AlignTextIntermediate(config) |
|
self.output = AlignTextOutput(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
|
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None |
|
self_attention_outputs = self.attention( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
output_attentions=output_attentions, |
|
past_key_value=self_attn_past_key_value, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
|
|
|
|
if self.is_decoder: |
|
outputs = self_attention_outputs[1:-1] |
|
present_key_value = self_attention_outputs[-1] |
|
else: |
|
outputs = self_attention_outputs[1:] |
|
|
|
cross_attn_present_key_value = None |
|
if self.is_decoder and encoder_hidden_states is not None: |
|
if not hasattr(self, "crossattention"): |
|
raise ValueError( |
|
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" |
|
" by setting `config.add_cross_attention=True`" |
|
) |
|
|
|
|
|
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None |
|
cross_attention_outputs = self.crossattention( |
|
attention_output, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
cross_attn_past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = cross_attention_outputs[0] |
|
outputs = outputs + cross_attention_outputs[1:-1] |
|
|
|
|
|
cross_attn_present_key_value = cross_attention_outputs[-1] |
|
present_key_value = present_key_value + cross_attn_present_key_value |
|
|
|
layer_output = apply_chunking_to_forward( |
|
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output |
|
) |
|
outputs = (layer_output,) + outputs |
|
|
|
|
|
if self.is_decoder: |
|
outputs = outputs + (present_key_value,) |
|
|
|
return outputs |
|
|
|
def feed_forward_chunk(self, attention_output): |
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
|
|
class AlignTextEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList([AlignTextLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = False, |
|
output_hidden_states: Optional[bool] = False, |
|
return_dict: Optional[bool] = True, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
next_decoder_cache = () if use_cache else None |
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
past_key_value = past_key_values[i] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, past_key_value, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[-1],) |
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
if self.config.add_cross_attention: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
next_decoder_cache, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_decoder_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
|
|
class AlignTextPooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
class AlignPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = AlignConfig |
|
base_model_prefix = "align" |
|
supports_gradient_checkpointing = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, (nn.Linear, nn.Conv2d)): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, AlignModel): |
|
nn.init.xavier_uniform_(module.text_projection.weight) |
|
module.text_projection.bias.data.zero_() |
|
module.text_projection._is_hf_initialized = True |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
if isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, (AlignTextModel, AlignVisionModel)): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
@add_start_docstrings( |
|
"""The text model from ALIGN without any head or projection on top.""", |
|
ALIGN_START_DOCSTRING, |
|
) |
|
class AlignTextModel(AlignPreTrainedModel): |
|
config_class = AlignTextConfig |
|
|
|
def __init__(self, config: AlignTextConfig, add_pooling_layer: bool = True): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = AlignTextEmbeddings(config) |
|
self.encoder = AlignTextEncoder(config) |
|
|
|
self.pooler = AlignTextPooler(config) if add_pooling_layer else None |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
@add_start_docstrings_to_model_forward(ALIGN_TEXT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=AlignTextConfig) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, AlignTextModel |
|
|
|
>>> model = AlignTextModel.from_pretrained("kakaobrain/align-base") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("kakaobrain/align-base") |
|
|
|
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") |
|
|
|
>>> outputs = model(**inputs) |
|
>>> last_hidden_state = outputs.last_hidden_state |
|
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states |
|
```""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
batch_size, seq_length = input_shape |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(((batch_size, seq_length)), device=device) |
|
|
|
if token_type_ids is None: |
|
if hasattr(self.embeddings, "token_type_ids"): |
|
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) |
|
|
|
|
|
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
embedding_output = self.embeddings( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
inputs_embeds=inputs_embeds, |
|
) |
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
|
|
if not return_dict: |
|
return (sequence_output, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
cross_attentions=encoder_outputs.cross_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"""The vision model from ALIGN without any head or projection on top.""", |
|
ALIGN_START_DOCSTRING, |
|
) |
|
class AlignVisionModel(AlignPreTrainedModel): |
|
config_class = AlignVisionConfig |
|
main_input_name = "pixel_values" |
|
|
|
def __init__(self, config: AlignVisionConfig): |
|
super().__init__(config) |
|
self.config = config |
|
self.embeddings = AlignVisionEmbeddings(config) |
|
self.encoder = AlignVisionEncoder(config) |
|
|
|
|
|
if config.pooling_type == "mean": |
|
self.pooler = nn.AvgPool2d(config.hidden_dim, ceil_mode=True) |
|
elif config.pooling_type == "max": |
|
self.pooler = nn.MaxPool2d(config.hidden_dim, ceil_mode=True) |
|
else: |
|
raise ValueError(f"config.pooling must be one of ['mean', 'max'] got {config.pooling}") |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.vision_model.embeddings.convolution |
|
|
|
@add_start_docstrings_to_model_forward(ALIGN_VISION_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=AlignVisionConfig) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, AlignVisionModel |
|
|
|
>>> model = AlignVisionModel.from_pretrained("kakaobrain/align-base") |
|
>>> processor = AutoProcessor.from_pretrained("kakaobrain/align-base") |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor(images=image, return_tensors="pt") |
|
|
|
>>> outputs = model(**inputs) |
|
>>> last_hidden_state = outputs.last_hidden_state |
|
>>> pooled_output = outputs.pooler_output # pooled CLS states |
|
```""" |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if pixel_values is None: |
|
raise ValueError("You have to specify pixel_values") |
|
|
|
embedding_output = self.embeddings(pixel_values) |
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
last_hidden_state = encoder_outputs[0] |
|
pooled_output = self.pooler(last_hidden_state) |
|
|
|
pooled_output = pooled_output.reshape(pooled_output.shape[:2]) |
|
|
|
if not return_dict: |
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPoolingAndNoAttention( |
|
last_hidden_state=last_hidden_state, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
) |
|
|
|
|
|
@add_start_docstrings(ALIGN_START_DOCSTRING) |
|
class AlignModel(AlignPreTrainedModel): |
|
config_class = AlignConfig |
|
|
|
def __init__(self, config: AlignConfig): |
|
super().__init__(config) |
|
|
|
if not isinstance(config.text_config, AlignTextConfig): |
|
raise ValueError( |
|
"config.text_config is expected to be of type AlignTextConfig but is of type" |
|
f" {type(config.text_config)}." |
|
) |
|
|
|
if not isinstance(config.vision_config, AlignVisionConfig): |
|
raise ValueError( |
|
"config.vision_config is expected to be of type AlignVisionConfig but is of type" |
|
f" {type(config.vision_config)}." |
|
) |
|
|
|
text_config = config.text_config |
|
vision_config = config.vision_config |
|
|
|
self.projection_dim = config.projection_dim |
|
self.text_embed_dim = text_config.hidden_size |
|
|
|
self.text_model = AlignTextModel(text_config) |
|
self.vision_model = AlignVisionModel(vision_config) |
|
|
|
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim) |
|
self.temperature = nn.Parameter(torch.tensor(self.config.temperature_init_value)) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(ALIGN_TEXT_INPUTS_DOCSTRING) |
|
def get_text_features( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> torch.FloatTensor: |
|
r""" |
|
Returns: |
|
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by |
|
applying the projection layer to the pooled output of [`AlignTextModel`]. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, AlignModel |
|
|
|
>>> model = AlignModel.from_pretrained("kakaobrain/align-base") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("kakaobrain/align-base") |
|
|
|
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") |
|
>>> text_features = model.get_text_features(**inputs) |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
text_outputs = self.text_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
last_hidden_state = text_outputs[0][:, 0, :] |
|
text_features = self.text_projection(last_hidden_state) |
|
|
|
return text_features |
|
|
|
@add_start_docstrings_to_model_forward(ALIGN_VISION_INPUTS_DOCSTRING) |
|
def get_image_features( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> torch.FloatTensor: |
|
r""" |
|
Returns: |
|
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by |
|
applying the projection layer to the pooled output of [`AlignVisionModel`]. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, AlignModel |
|
|
|
>>> model = AlignModel.from_pretrained("kakaobrain/align-base") |
|
>>> processor = AutoProcessor.from_pretrained("kakaobrain/align-base") |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor(images=image, return_tensors="pt") |
|
|
|
>>> image_features = model.get_image_features(**inputs) |
|
```""" |
|
|
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
vision_outputs = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
image_features = vision_outputs[1] |
|
|
|
return image_features |
|
|
|
@add_start_docstrings_to_model_forward(ALIGN_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=AlignOutput, config_class=AlignConfig) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
return_loss: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, AlignOutput]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, AlignModel |
|
|
|
>>> model = AlignModel.from_pretrained("kakaobrain/align-base") |
|
>>> processor = AutoProcessor.from_pretrained("kakaobrain/align-base") |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor( |
|
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True |
|
... ) |
|
|
|
>>> outputs = model(**inputs) |
|
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score |
|
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
vision_outputs = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
text_outputs = self.text_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
image_embeds = vision_outputs[1] |
|
text_embeds = text_outputs[0][:, 0, :] |
|
text_embeds = self.text_projection(text_embeds) |
|
|
|
|
|
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) |
|
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) |
|
|
|
|
|
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) / self.temperature |
|
logits_per_image = logits_per_text.t() |
|
|
|
loss = None |
|
if return_loss: |
|
loss = align_loss(logits_per_text) |
|
|
|
if not return_dict: |
|
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return AlignOutput( |
|
loss=loss, |
|
logits_per_image=logits_per_image, |
|
logits_per_text=logits_per_text, |
|
text_embeds=text_embeds, |
|
image_embeds=image_embeds, |
|
text_model_output=text_outputs, |
|
vision_model_output=vision_outputs, |
|
) |
|
|