|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" TF 2.0 ALBERT model.""" |
|
|
|
|
|
from __future__ import annotations |
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import Dict, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import tensorflow as tf |
|
|
|
from ...activations_tf import get_tf_activation |
|
from ...modeling_tf_outputs import ( |
|
TFBaseModelOutput, |
|
TFBaseModelOutputWithPooling, |
|
TFMaskedLMOutput, |
|
TFMultipleChoiceModelOutput, |
|
TFQuestionAnsweringModelOutput, |
|
TFSequenceClassifierOutput, |
|
TFTokenClassifierOutput, |
|
) |
|
from ...modeling_tf_utils import ( |
|
TFMaskedLanguageModelingLoss, |
|
TFModelInputType, |
|
TFMultipleChoiceLoss, |
|
TFPreTrainedModel, |
|
TFQuestionAnsweringLoss, |
|
TFSequenceClassificationLoss, |
|
TFTokenClassificationLoss, |
|
get_initializer, |
|
keras_serializable, |
|
unpack_inputs, |
|
) |
|
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax |
|
from ...utils import ( |
|
ModelOutput, |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from .configuration_albert import AlbertConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "albert-base-v2" |
|
_CONFIG_FOR_DOC = "AlbertConfig" |
|
|
|
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"albert-base-v1", |
|
"albert-large-v1", |
|
"albert-xlarge-v1", |
|
"albert-xxlarge-v1", |
|
"albert-base-v2", |
|
"albert-large-v2", |
|
"albert-xlarge-v2", |
|
"albert-xxlarge-v2", |
|
|
|
] |
|
|
|
|
|
class TFAlbertPreTrainingLoss: |
|
""" |
|
Loss function suitable for ALBERT pretraining, that is, the task of pretraining a language model by combining SOP + |
|
MLM. .. note:: Any label of -100 will be ignored (along with the corresponding logits) in the loss computation. |
|
""" |
|
|
|
def hf_compute_loss(self, labels: tf.Tensor, logits: tf.Tensor) -> tf.Tensor: |
|
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy( |
|
from_logits=True, reduction=tf.keras.losses.Reduction.NONE |
|
) |
|
if self.config.tf_legacy_loss: |
|
|
|
|
|
masked_lm_active_loss = tf.not_equal(tf.reshape(tensor=labels["labels"], shape=(-1,)), -100) |
|
masked_lm_reduced_logits = tf.boolean_mask( |
|
tensor=tf.reshape(tensor=logits[0], shape=(-1, shape_list(logits[0])[2])), |
|
mask=masked_lm_active_loss, |
|
) |
|
masked_lm_labels = tf.boolean_mask( |
|
tensor=tf.reshape(tensor=labels["labels"], shape=(-1,)), mask=masked_lm_active_loss |
|
) |
|
sentence_order_active_loss = tf.not_equal( |
|
tf.reshape(tensor=labels["sentence_order_label"], shape=(-1,)), -100 |
|
) |
|
sentence_order_reduced_logits = tf.boolean_mask( |
|
tensor=tf.reshape(tensor=logits[1], shape=(-1, 2)), mask=sentence_order_active_loss |
|
) |
|
sentence_order_label = tf.boolean_mask( |
|
tensor=tf.reshape(tensor=labels["sentence_order_label"], shape=(-1,)), mask=sentence_order_active_loss |
|
) |
|
masked_lm_loss = loss_fn(y_true=masked_lm_labels, y_pred=masked_lm_reduced_logits) |
|
sentence_order_loss = loss_fn(y_true=sentence_order_label, y_pred=sentence_order_reduced_logits) |
|
masked_lm_loss = tf.reshape(tensor=masked_lm_loss, shape=(-1, shape_list(sentence_order_loss)[0])) |
|
masked_lm_loss = tf.reduce_mean(input_tensor=masked_lm_loss, axis=0) |
|
|
|
return masked_lm_loss + sentence_order_loss |
|
|
|
|
|
unmasked_lm_losses = loss_fn(y_true=tf.nn.relu(labels["labels"]), y_pred=logits[0]) |
|
|
|
|
|
lm_loss_mask = tf.cast(labels["labels"] != -100, dtype=unmasked_lm_losses.dtype) |
|
masked_lm_losses = unmasked_lm_losses * lm_loss_mask |
|
reduced_masked_lm_loss = tf.reduce_sum(masked_lm_losses) / tf.reduce_sum(lm_loss_mask) |
|
|
|
sop_logits = tf.reshape(logits[1], (-1, 2)) |
|
|
|
unmasked_sop_loss = loss_fn(y_true=tf.nn.relu(labels["sentence_order_label"]), y_pred=sop_logits) |
|
sop_loss_mask = tf.cast(labels["sentence_order_label"] != -100, dtype=unmasked_sop_loss.dtype) |
|
|
|
masked_sop_loss = unmasked_sop_loss * sop_loss_mask |
|
reduced_masked_sop_loss = tf.reduce_sum(masked_sop_loss) / tf.reduce_sum(sop_loss_mask) |
|
|
|
return tf.reshape(reduced_masked_lm_loss + reduced_masked_sop_loss, (1,)) |
|
|
|
|
|
class TFAlbertEmbeddings(tf.keras.layers.Layer): |
|
"""Construct the embeddings from word, position and token_type embeddings.""" |
|
|
|
def __init__(self, config: AlbertConfig, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
self.config = config |
|
self.embedding_size = config.embedding_size |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.initializer_range = config.initializer_range |
|
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") |
|
self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) |
|
|
|
def build(self, input_shape: tf.TensorShape): |
|
with tf.name_scope("word_embeddings"): |
|
self.weight = self.add_weight( |
|
name="weight", |
|
shape=[self.config.vocab_size, self.embedding_size], |
|
initializer=get_initializer(self.initializer_range), |
|
) |
|
|
|
with tf.name_scope("token_type_embeddings"): |
|
self.token_type_embeddings = self.add_weight( |
|
name="embeddings", |
|
shape=[self.config.type_vocab_size, self.embedding_size], |
|
initializer=get_initializer(self.initializer_range), |
|
) |
|
|
|
with tf.name_scope("position_embeddings"): |
|
self.position_embeddings = self.add_weight( |
|
name="embeddings", |
|
shape=[self.max_position_embeddings, self.embedding_size], |
|
initializer=get_initializer(self.initializer_range), |
|
) |
|
|
|
super().build(input_shape) |
|
|
|
|
|
def call( |
|
self, |
|
input_ids: tf.Tensor = None, |
|
position_ids: tf.Tensor = None, |
|
token_type_ids: tf.Tensor = None, |
|
inputs_embeds: tf.Tensor = None, |
|
past_key_values_length=0, |
|
training: bool = False, |
|
) -> tf.Tensor: |
|
""" |
|
Applies embedding based on inputs tensor. |
|
|
|
Returns: |
|
final_embeddings (`tf.Tensor`): output embedding tensor. |
|
""" |
|
if input_ids is None and inputs_embeds is None: |
|
raise ValueError("Need to provide either `input_ids` or `input_embeds`.") |
|
|
|
if input_ids is not None: |
|
check_embeddings_within_bounds(input_ids, self.config.vocab_size) |
|
inputs_embeds = tf.gather(params=self.weight, indices=input_ids) |
|
|
|
input_shape = shape_list(inputs_embeds)[:-1] |
|
|
|
if token_type_ids is None: |
|
token_type_ids = tf.fill(dims=input_shape, value=0) |
|
|
|
if position_ids is None: |
|
position_ids = tf.expand_dims( |
|
tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0 |
|
) |
|
|
|
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) |
|
token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) |
|
final_embeddings = inputs_embeds + position_embeds + token_type_embeds |
|
final_embeddings = self.LayerNorm(inputs=final_embeddings) |
|
final_embeddings = self.dropout(inputs=final_embeddings, training=training) |
|
|
|
return final_embeddings |
|
|
|
|
|
class TFAlbertAttention(tf.keras.layers.Layer): |
|
"""Contains the complete attention sublayer, including both dropouts and layer norm.""" |
|
|
|
def __init__(self, config: AlbertConfig, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
if config.hidden_size % config.num_attention_heads != 0: |
|
raise ValueError( |
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number " |
|
f"of attention heads ({config.num_attention_heads})" |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
self.sqrt_att_head_size = math.sqrt(self.attention_head_size) |
|
self.output_attentions = config.output_attentions |
|
|
|
self.query = tf.keras.layers.Dense( |
|
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" |
|
) |
|
self.key = tf.keras.layers.Dense( |
|
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" |
|
) |
|
self.value = tf.keras.layers.Dense( |
|
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" |
|
) |
|
self.dense = tf.keras.layers.Dense( |
|
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" |
|
) |
|
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") |
|
|
|
self.attention_dropout = tf.keras.layers.Dropout(rate=config.attention_probs_dropout_prob) |
|
self.output_dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) |
|
|
|
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: |
|
|
|
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) |
|
|
|
|
|
return tf.transpose(tensor, perm=[0, 2, 1, 3]) |
|
|
|
def call( |
|
self, |
|
input_tensor: tf.Tensor, |
|
attention_mask: tf.Tensor, |
|
head_mask: tf.Tensor, |
|
output_attentions: bool, |
|
training: bool = False, |
|
) -> Tuple[tf.Tensor]: |
|
batch_size = shape_list(input_tensor)[0] |
|
mixed_query_layer = self.query(inputs=input_tensor) |
|
mixed_key_layer = self.key(inputs=input_tensor) |
|
mixed_value_layer = self.value(inputs=input_tensor) |
|
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) |
|
key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) |
|
value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) |
|
|
|
|
|
|
|
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) |
|
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) |
|
attention_scores = tf.divide(attention_scores, dk) |
|
|
|
if attention_mask is not None: |
|
|
|
attention_scores = tf.add(attention_scores, attention_mask) |
|
|
|
|
|
attention_probs = stable_softmax(logits=attention_scores, axis=-1) |
|
|
|
|
|
|
|
attention_probs = self.attention_dropout(inputs=attention_probs, training=training) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = tf.multiply(attention_probs, head_mask) |
|
|
|
context_layer = tf.matmul(attention_probs, value_layer) |
|
context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) |
|
|
|
|
|
context_layer = tf.reshape(tensor=context_layer, shape=(batch_size, -1, self.all_head_size)) |
|
self_outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
hidden_states = self_outputs[0] |
|
hidden_states = self.dense(inputs=hidden_states) |
|
hidden_states = self.output_dropout(inputs=hidden_states, training=training) |
|
attention_output = self.LayerNorm(inputs=hidden_states + input_tensor) |
|
|
|
|
|
outputs = (attention_output,) + self_outputs[1:] |
|
|
|
return outputs |
|
|
|
|
|
class TFAlbertLayer(tf.keras.layers.Layer): |
|
def __init__(self, config: AlbertConfig, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
self.attention = TFAlbertAttention(config, name="attention") |
|
self.ffn = tf.keras.layers.Dense( |
|
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="ffn" |
|
) |
|
|
|
if isinstance(config.hidden_act, str): |
|
self.activation = get_tf_activation(config.hidden_act) |
|
else: |
|
self.activation = config.hidden_act |
|
|
|
self.ffn_output = tf.keras.layers.Dense( |
|
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="ffn_output" |
|
) |
|
self.full_layer_layer_norm = tf.keras.layers.LayerNormalization( |
|
epsilon=config.layer_norm_eps, name="full_layer_layer_norm" |
|
) |
|
self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) |
|
|
|
def call( |
|
self, |
|
hidden_states: tf.Tensor, |
|
attention_mask: tf.Tensor, |
|
head_mask: tf.Tensor, |
|
output_attentions: bool, |
|
training: bool = False, |
|
) -> Tuple[tf.Tensor]: |
|
attention_outputs = self.attention( |
|
input_tensor=hidden_states, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
training=training, |
|
) |
|
ffn_output = self.ffn(inputs=attention_outputs[0]) |
|
ffn_output = self.activation(ffn_output) |
|
ffn_output = self.ffn_output(inputs=ffn_output) |
|
ffn_output = self.dropout(inputs=ffn_output, training=training) |
|
hidden_states = self.full_layer_layer_norm(inputs=ffn_output + attention_outputs[0]) |
|
|
|
|
|
outputs = (hidden_states,) + attention_outputs[1:] |
|
|
|
return outputs |
|
|
|
|
|
class TFAlbertLayerGroup(tf.keras.layers.Layer): |
|
def __init__(self, config: AlbertConfig, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
self.albert_layers = [ |
|
TFAlbertLayer(config, name=f"albert_layers_._{i}") for i in range(config.inner_group_num) |
|
] |
|
|
|
def call( |
|
self, |
|
hidden_states: tf.Tensor, |
|
attention_mask: tf.Tensor, |
|
head_mask: tf.Tensor, |
|
output_attentions: bool, |
|
output_hidden_states: bool, |
|
training: bool = False, |
|
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: |
|
layer_hidden_states = () if output_hidden_states else None |
|
layer_attentions = () if output_attentions else None |
|
|
|
for layer_index, albert_layer in enumerate(self.albert_layers): |
|
if output_hidden_states: |
|
layer_hidden_states = layer_hidden_states + (hidden_states,) |
|
|
|
layer_output = albert_layer( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask[layer_index], |
|
output_attentions=output_attentions, |
|
training=training, |
|
) |
|
hidden_states = layer_output[0] |
|
|
|
if output_attentions: |
|
layer_attentions = layer_attentions + (layer_output[1],) |
|
|
|
|
|
if output_hidden_states: |
|
layer_hidden_states = layer_hidden_states + (hidden_states,) |
|
|
|
return tuple(v for v in [hidden_states, layer_hidden_states, layer_attentions] if v is not None) |
|
|
|
|
|
class TFAlbertTransformer(tf.keras.layers.Layer): |
|
def __init__(self, config: AlbertConfig, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
self.num_hidden_layers = config.num_hidden_layers |
|
self.num_hidden_groups = config.num_hidden_groups |
|
|
|
self.layers_per_group = int(config.num_hidden_layers / config.num_hidden_groups) |
|
self.embedding_hidden_mapping_in = tf.keras.layers.Dense( |
|
units=config.hidden_size, |
|
kernel_initializer=get_initializer(config.initializer_range), |
|
name="embedding_hidden_mapping_in", |
|
) |
|
self.albert_layer_groups = [ |
|
TFAlbertLayerGroup(config, name=f"albert_layer_groups_._{i}") for i in range(config.num_hidden_groups) |
|
] |
|
|
|
def call( |
|
self, |
|
hidden_states: tf.Tensor, |
|
attention_mask: tf.Tensor, |
|
head_mask: tf.Tensor, |
|
output_attentions: bool, |
|
output_hidden_states: bool, |
|
return_dict: bool, |
|
training: bool = False, |
|
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: |
|
hidden_states = self.embedding_hidden_mapping_in(inputs=hidden_states) |
|
all_attentions = () if output_attentions else None |
|
all_hidden_states = (hidden_states,) if output_hidden_states else None |
|
|
|
for i in range(self.num_hidden_layers): |
|
|
|
group_idx = int(i / (self.num_hidden_layers / self.num_hidden_groups)) |
|
layer_group_output = self.albert_layer_groups[group_idx]( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask[group_idx * self.layers_per_group : (group_idx + 1) * self.layers_per_group], |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
training=training, |
|
) |
|
hidden_states = layer_group_output[0] |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + layer_group_output[-1] |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) |
|
|
|
return TFBaseModelOutput( |
|
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions |
|
) |
|
|
|
|
|
class TFAlbertPreTrainedModel(TFPreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = AlbertConfig |
|
base_model_prefix = "albert" |
|
|
|
|
|
class TFAlbertMLMHead(tf.keras.layers.Layer): |
|
def __init__(self, config: AlbertConfig, input_embeddings: tf.keras.layers.Layer, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
self.config = config |
|
self.embedding_size = config.embedding_size |
|
self.dense = tf.keras.layers.Dense( |
|
config.embedding_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" |
|
) |
|
if isinstance(config.hidden_act, str): |
|
self.activation = get_tf_activation(config.hidden_act) |
|
else: |
|
self.activation = config.hidden_act |
|
|
|
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") |
|
|
|
|
|
|
|
self.decoder = input_embeddings |
|
|
|
def build(self, input_shape: tf.TensorShape): |
|
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") |
|
self.decoder_bias = self.add_weight( |
|
shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="decoder/bias" |
|
) |
|
|
|
super().build(input_shape) |
|
|
|
def get_output_embeddings(self) -> tf.keras.layers.Layer: |
|
return self.decoder |
|
|
|
def set_output_embeddings(self, value: tf.Variable): |
|
self.decoder.weight = value |
|
self.decoder.vocab_size = shape_list(value)[0] |
|
|
|
def get_bias(self) -> Dict[str, tf.Variable]: |
|
return {"bias": self.bias, "decoder_bias": self.decoder_bias} |
|
|
|
def set_bias(self, value: tf.Variable): |
|
self.bias = value["bias"] |
|
self.decoder_bias = value["decoder_bias"] |
|
self.config.vocab_size = shape_list(value["bias"])[0] |
|
|
|
def call(self, hidden_states: tf.Tensor) -> tf.Tensor: |
|
hidden_states = self.dense(inputs=hidden_states) |
|
hidden_states = self.activation(hidden_states) |
|
hidden_states = self.LayerNorm(inputs=hidden_states) |
|
seq_length = shape_list(tensor=hidden_states)[1] |
|
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size]) |
|
hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True) |
|
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) |
|
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.decoder_bias) |
|
|
|
return hidden_states |
|
|
|
|
|
@keras_serializable |
|
class TFAlbertMainLayer(tf.keras.layers.Layer): |
|
config_class = AlbertConfig |
|
|
|
def __init__(self, config: AlbertConfig, add_pooling_layer: bool = True, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
self.config = config |
|
|
|
self.embeddings = TFAlbertEmbeddings(config, name="embeddings") |
|
self.encoder = TFAlbertTransformer(config, name="encoder") |
|
self.pooler = ( |
|
tf.keras.layers.Dense( |
|
units=config.hidden_size, |
|
kernel_initializer=get_initializer(config.initializer_range), |
|
activation="tanh", |
|
name="pooler", |
|
) |
|
if add_pooling_layer |
|
else None |
|
) |
|
|
|
def get_input_embeddings(self) -> tf.keras.layers.Layer: |
|
return self.embeddings |
|
|
|
def set_input_embeddings(self, value: tf.Variable): |
|
self.embeddings.weight = value |
|
self.embeddings.vocab_size = shape_list(value)[0] |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
raise NotImplementedError |
|
|
|
@unpack_inputs |
|
def call( |
|
self, |
|
input_ids: TFModelInputType | None = None, |
|
attention_mask: np.ndarray | tf.Tensor | None = None, |
|
token_type_ids: np.ndarray | tf.Tensor | None = None, |
|
position_ids: np.ndarray | tf.Tensor | None = None, |
|
head_mask: np.ndarray | tf.Tensor | None = None, |
|
inputs_embeds: np.ndarray | tf.Tensor | None = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
training: bool = False, |
|
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: |
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = shape_list(input_ids) |
|
elif inputs_embeds is not None: |
|
input_shape = shape_list(inputs_embeds)[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
if attention_mask is None: |
|
attention_mask = tf.fill(dims=input_shape, value=1) |
|
|
|
if token_type_ids is None: |
|
token_type_ids = tf.fill(dims=input_shape, value=0) |
|
|
|
embedding_output = self.embeddings( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
inputs_embeds=inputs_embeds, |
|
training=training, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) |
|
|
|
|
|
|
|
|
|
|
|
|
|
extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) |
|
one_cst = tf.constant(1.0, dtype=embedding_output.dtype) |
|
ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) |
|
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if head_mask is not None: |
|
raise NotImplementedError |
|
else: |
|
head_mask = [None] * self.config.num_hidden_layers |
|
|
|
encoder_outputs = self.encoder( |
|
hidden_states=embedding_output, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
|
|
sequence_output = encoder_outputs[0] |
|
pooled_output = self.pooler(inputs=sequence_output[:, 0]) if self.pooler is not None else None |
|
|
|
if not return_dict: |
|
return ( |
|
sequence_output, |
|
pooled_output, |
|
) + encoder_outputs[1:] |
|
|
|
return TFBaseModelOutputWithPooling( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
@dataclass |
|
class TFAlbertForPreTrainingOutput(ModelOutput): |
|
""" |
|
Output type of [`TFAlbertForPreTraining`]. |
|
|
|
Args: |
|
prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
sop_logits (`tf.Tensor` of shape `(batch_size, 2)`): |
|
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation |
|
before SoftMax). |
|
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape |
|
`(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
loss: tf.Tensor = None |
|
prediction_logits: tf.Tensor = None |
|
sop_logits: tf.Tensor = None |
|
hidden_states: Tuple[tf.Tensor] | None = None |
|
attentions: Tuple[tf.Tensor] | None = None |
|
|
|
|
|
ALBERT_START_DOCSTRING = r""" |
|
|
|
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it |
|
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and |
|
behavior. |
|
|
|
<Tip> |
|
|
|
TensorFlow models and layers in `transformers` accept two formats as input: |
|
|
|
- having all inputs as keyword arguments (like PyTorch models), or |
|
- having all inputs as a list, tuple or dict in the first positional argument. |
|
|
|
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models |
|
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just |
|
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second |
|
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with |
|
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first |
|
positional argument: |
|
|
|
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)` |
|
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: |
|
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` |
|
- a dictionary with one or several input Tensors associated to the input names given in the docstring: |
|
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})` |
|
|
|
Note that when creating models and layers with |
|
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry |
|
about any of this, as you can just pass inputs like you would to any other Python function! |
|
|
|
</Tip> |
|
|
|
Args: |
|
config ([`AlbertConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
ALBERT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and |
|
[`PreTrainedTokenizer.encode`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): |
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, |
|
1]`: |
|
|
|
- 0 corresponds to a *sentence A* token, |
|
- 1 corresponds to a *sentence B* token. |
|
|
|
[What are token type IDs?](../glossary#token-type-ids) |
|
position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the |
|
config will be used instead. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be |
|
used instead. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in |
|
eager mode, in graph mode the value will always be set to True. |
|
training (`bool`, *optional*, defaults to `False`): |
|
Whether or not to use the model in training mode (some modules like dropout modules have different |
|
behaviors between training and evaluation). |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Albert Model transformer outputting raw hidden-states without any specific head on top.", |
|
ALBERT_START_DOCSTRING, |
|
) |
|
class TFAlbertModel(TFAlbertPreTrainedModel): |
|
def __init__(self, config: AlbertConfig, *inputs, **kwargs): |
|
super().__init__(config, *inputs, **kwargs) |
|
|
|
self.albert = TFAlbertMainLayer(config, name="albert") |
|
|
|
@unpack_inputs |
|
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=TFBaseModelOutputWithPooling, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def call( |
|
self, |
|
input_ids: TFModelInputType | None = None, |
|
attention_mask: np.ndarray | tf.Tensor | None = None, |
|
token_type_ids: np.ndarray | tf.Tensor | None = None, |
|
position_ids: np.ndarray | tf.Tensor | None = None, |
|
head_mask: np.ndarray | tf.Tensor | None = None, |
|
inputs_embeds: np.ndarray | tf.Tensor | None = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
training: Optional[bool] = False, |
|
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: |
|
outputs = self.albert( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
|
|
return outputs |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Albert Model with two heads on top for pretraining: a `masked language modeling` head and a `sentence order |
|
prediction` (classification) head. |
|
""", |
|
ALBERT_START_DOCSTRING, |
|
) |
|
class TFAlbertForPreTraining(TFAlbertPreTrainedModel, TFAlbertPreTrainingLoss): |
|
|
|
_keys_to_ignore_on_load_unexpected = [r"predictions.decoder.weight"] |
|
|
|
def __init__(self, config: AlbertConfig, *inputs, **kwargs): |
|
super().__init__(config, *inputs, **kwargs) |
|
|
|
self.num_labels = config.num_labels |
|
|
|
self.albert = TFAlbertMainLayer(config, name="albert") |
|
self.predictions = TFAlbertMLMHead(config, input_embeddings=self.albert.embeddings, name="predictions") |
|
self.sop_classifier = TFAlbertSOPHead(config, name="sop_classifier") |
|
|
|
def get_lm_head(self) -> tf.keras.layers.Layer: |
|
return self.predictions |
|
|
|
@unpack_inputs |
|
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@replace_return_docstrings(output_type=TFAlbertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) |
|
def call( |
|
self, |
|
input_ids: TFModelInputType | None = None, |
|
attention_mask: np.ndarray | tf.Tensor | None = None, |
|
token_type_ids: np.ndarray | tf.Tensor | None = None, |
|
position_ids: np.ndarray | tf.Tensor | None = None, |
|
head_mask: np.ndarray | tf.Tensor | None = None, |
|
inputs_embeds: np.ndarray | tf.Tensor | None = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
labels: np.ndarray | tf.Tensor | None = None, |
|
sentence_order_label: np.ndarray | tf.Tensor | None = None, |
|
training: Optional[bool] = False, |
|
) -> Union[TFAlbertForPreTrainingOutput, Tuple[tf.Tensor]]: |
|
r""" |
|
Return: |
|
|
|
Example: |
|
|
|
```python |
|
>>> import tensorflow as tf |
|
>>> from transformers import AutoTokenizer, TFAlbertForPreTraining |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2") |
|
>>> model = TFAlbertForPreTraining.from_pretrained("albert-base-v2") |
|
|
|
>>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] |
|
>>> # Batch size 1 |
|
>>> outputs = model(input_ids) |
|
|
|
>>> prediction_logits = outputs.prediction_logits |
|
>>> sop_logits = outputs.sop_logits |
|
```""" |
|
|
|
outputs = self.albert( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
sequence_output, pooled_output = outputs[:2] |
|
prediction_scores = self.predictions(hidden_states=sequence_output) |
|
sop_scores = self.sop_classifier(pooled_output=pooled_output, training=training) |
|
total_loss = None |
|
|
|
if labels is not None and sentence_order_label is not None: |
|
d_labels = {"labels": labels} |
|
d_labels["sentence_order_label"] = sentence_order_label |
|
total_loss = self.hf_compute_loss(labels=d_labels, logits=(prediction_scores, sop_scores)) |
|
|
|
if not return_dict: |
|
output = (prediction_scores, sop_scores) + outputs[2:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return TFAlbertForPreTrainingOutput( |
|
loss=total_loss, |
|
prediction_logits=prediction_scores, |
|
sop_logits=sop_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class TFAlbertSOPHead(tf.keras.layers.Layer): |
|
def __init__(self, config: AlbertConfig, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
self.dropout = tf.keras.layers.Dropout(rate=config.classifier_dropout_prob) |
|
self.classifier = tf.keras.layers.Dense( |
|
units=config.num_labels, |
|
kernel_initializer=get_initializer(config.initializer_range), |
|
name="classifier", |
|
) |
|
|
|
def call(self, pooled_output: tf.Tensor, training: bool) -> tf.Tensor: |
|
dropout_pooled_output = self.dropout(inputs=pooled_output, training=training) |
|
logits = self.classifier(inputs=dropout_pooled_output) |
|
|
|
return logits |
|
|
|
|
|
@add_start_docstrings("""Albert Model with a `language modeling` head on top.""", ALBERT_START_DOCSTRING) |
|
class TFAlbertForMaskedLM(TFAlbertPreTrainedModel, TFMaskedLanguageModelingLoss): |
|
|
|
_keys_to_ignore_on_load_unexpected = [r"pooler", r"predictions.decoder.weight"] |
|
|
|
def __init__(self, config: AlbertConfig, *inputs, **kwargs): |
|
super().__init__(config, *inputs, **kwargs) |
|
|
|
self.albert = TFAlbertMainLayer(config, add_pooling_layer=False, name="albert") |
|
self.predictions = TFAlbertMLMHead(config, input_embeddings=self.albert.embeddings, name="predictions") |
|
|
|
def get_lm_head(self) -> tf.keras.layers.Layer: |
|
return self.predictions |
|
|
|
@unpack_inputs |
|
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@replace_return_docstrings(output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC) |
|
def call( |
|
self, |
|
input_ids: TFModelInputType | None = None, |
|
attention_mask: np.ndarray | tf.Tensor | None = None, |
|
token_type_ids: np.ndarray | tf.Tensor | None = None, |
|
position_ids: np.ndarray | tf.Tensor | None = None, |
|
head_mask: np.ndarray | tf.Tensor | None = None, |
|
inputs_embeds: np.ndarray | tf.Tensor | None = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
labels: np.ndarray | tf.Tensor | None = None, |
|
training: Optional[bool] = False, |
|
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: |
|
r""" |
|
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the |
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> import tensorflow as tf |
|
>>> from transformers import AutoTokenizer, TFAlbertForMaskedLM |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2") |
|
>>> model = TFAlbertForMaskedLM.from_pretrained("albert-base-v2") |
|
|
|
>>> # add mask_token |
|
>>> inputs = tokenizer(f"The capital of [MASK] is Paris.", return_tensors="tf") |
|
>>> logits = model(**inputs).logits |
|
|
|
>>> # retrieve index of [MASK] |
|
>>> mask_token_index = tf.where(inputs.input_ids == tokenizer.mask_token_id)[0][1] |
|
>>> predicted_token_id = tf.math.argmax(logits[0, mask_token_index], axis=-1) |
|
>>> tokenizer.decode(predicted_token_id) |
|
'france' |
|
``` |
|
|
|
```python |
|
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"] |
|
>>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) |
|
>>> outputs = model(**inputs, labels=labels) |
|
>>> round(float(outputs.loss), 2) |
|
0.81 |
|
``` |
|
""" |
|
outputs = self.albert( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
sequence_output = outputs[0] |
|
prediction_scores = self.predictions(hidden_states=sequence_output, training=training) |
|
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
|
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TFMaskedLMOutput( |
|
loss=loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Albert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled |
|
output) e.g. for GLUE tasks. |
|
""", |
|
ALBERT_START_DOCSTRING, |
|
) |
|
class TFAlbertForSequenceClassification(TFAlbertPreTrainedModel, TFSequenceClassificationLoss): |
|
|
|
_keys_to_ignore_on_load_unexpected = [r"predictions"] |
|
_keys_to_ignore_on_load_missing = [r"dropout"] |
|
|
|
def __init__(self, config: AlbertConfig, *inputs, **kwargs): |
|
super().__init__(config, *inputs, **kwargs) |
|
|
|
self.num_labels = config.num_labels |
|
|
|
self.albert = TFAlbertMainLayer(config, name="albert") |
|
self.dropout = tf.keras.layers.Dropout(rate=config.classifier_dropout_prob) |
|
self.classifier = tf.keras.layers.Dense( |
|
units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" |
|
) |
|
|
|
@unpack_inputs |
|
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
checkpoint="vumichien/albert-base-v2-imdb", |
|
output_type=TFSequenceClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
expected_output="'LABEL_1'", |
|
expected_loss=0.12, |
|
) |
|
def call( |
|
self, |
|
input_ids: TFModelInputType | None = None, |
|
attention_mask: np.ndarray | tf.Tensor | None = None, |
|
token_type_ids: np.ndarray | tf.Tensor | None = None, |
|
position_ids: np.ndarray | tf.Tensor | None = None, |
|
head_mask: np.ndarray | tf.Tensor | None = None, |
|
inputs_embeds: np.ndarray | tf.Tensor | None = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
labels: np.ndarray | tf.Tensor | None = None, |
|
training: Optional[bool] = False, |
|
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: |
|
r""" |
|
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
outputs = self.albert( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
pooled_output = outputs[1] |
|
pooled_output = self.dropout(inputs=pooled_output, training=training) |
|
logits = self.classifier(inputs=pooled_output) |
|
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
|
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TFSequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Albert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for |
|
Named-Entity-Recognition (NER) tasks. |
|
""", |
|
ALBERT_START_DOCSTRING, |
|
) |
|
class TFAlbertForTokenClassification(TFAlbertPreTrainedModel, TFTokenClassificationLoss): |
|
|
|
_keys_to_ignore_on_load_unexpected = [r"pooler", r"predictions"] |
|
_keys_to_ignore_on_load_missing = [r"dropout"] |
|
|
|
def __init__(self, config: AlbertConfig, *inputs, **kwargs): |
|
super().__init__(config, *inputs, **kwargs) |
|
|
|
self.num_labels = config.num_labels |
|
|
|
self.albert = TFAlbertMainLayer(config, add_pooling_layer=False, name="albert") |
|
classifier_dropout_prob = ( |
|
config.classifier_dropout_prob |
|
if config.classifier_dropout_prob is not None |
|
else config.hidden_dropout_prob |
|
) |
|
self.dropout = tf.keras.layers.Dropout(rate=classifier_dropout_prob) |
|
self.classifier = tf.keras.layers.Dense( |
|
units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" |
|
) |
|
|
|
@unpack_inputs |
|
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=TFTokenClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def call( |
|
self, |
|
input_ids: TFModelInputType | None = None, |
|
attention_mask: np.ndarray | tf.Tensor | None = None, |
|
token_type_ids: np.ndarray | tf.Tensor | None = None, |
|
position_ids: np.ndarray | tf.Tensor | None = None, |
|
head_mask: np.ndarray | tf.Tensor | None = None, |
|
inputs_embeds: np.ndarray | tf.Tensor | None = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
labels: np.ndarray | tf.Tensor | None = None, |
|
training: Optional[bool] = False, |
|
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: |
|
r""" |
|
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. |
|
""" |
|
outputs = self.albert( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
sequence_output = outputs[0] |
|
sequence_output = self.dropout(inputs=sequence_output, training=training) |
|
logits = self.classifier(inputs=sequence_output) |
|
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
|
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TFTokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Albert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear |
|
layer on top of the hidden-states output to compute `span start logits` and `span end logits`). |
|
""", |
|
ALBERT_START_DOCSTRING, |
|
) |
|
class TFAlbertForQuestionAnswering(TFAlbertPreTrainedModel, TFQuestionAnsweringLoss): |
|
|
|
_keys_to_ignore_on_load_unexpected = [r"pooler", r"predictions"] |
|
|
|
def __init__(self, config: AlbertConfig, *inputs, **kwargs): |
|
super().__init__(config, *inputs, **kwargs) |
|
|
|
self.num_labels = config.num_labels |
|
|
|
self.albert = TFAlbertMainLayer(config, add_pooling_layer=False, name="albert") |
|
self.qa_outputs = tf.keras.layers.Dense( |
|
units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" |
|
) |
|
|
|
@unpack_inputs |
|
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
checkpoint="vumichien/albert-base-v2-squad2", |
|
output_type=TFQuestionAnsweringModelOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
qa_target_start_index=12, |
|
qa_target_end_index=13, |
|
expected_output="'a nice puppet'", |
|
expected_loss=7.36, |
|
) |
|
def call( |
|
self, |
|
input_ids: TFModelInputType | None = None, |
|
attention_mask: np.ndarray | tf.Tensor | None = None, |
|
token_type_ids: np.ndarray | tf.Tensor | None = None, |
|
position_ids: np.ndarray | tf.Tensor | None = None, |
|
head_mask: np.ndarray | tf.Tensor | None = None, |
|
inputs_embeds: np.ndarray | tf.Tensor | None = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
start_positions: np.ndarray | tf.Tensor | None = None, |
|
end_positions: np.ndarray | tf.Tensor | None = None, |
|
training: Optional[bool] = False, |
|
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: |
|
r""" |
|
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
""" |
|
outputs = self.albert( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
sequence_output = outputs[0] |
|
logits = self.qa_outputs(inputs=sequence_output) |
|
start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1) |
|
start_logits = tf.squeeze(input=start_logits, axis=-1) |
|
end_logits = tf.squeeze(input=end_logits, axis=-1) |
|
loss = None |
|
|
|
if start_positions is not None and end_positions is not None: |
|
labels = {"start_position": start_positions} |
|
labels["end_position"] = end_positions |
|
loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits)) |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + outputs[2:] |
|
|
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TFQuestionAnsweringModelOutput( |
|
loss=loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Albert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a |
|
softmax) e.g. for RocStories/SWAG tasks. |
|
""", |
|
ALBERT_START_DOCSTRING, |
|
) |
|
class TFAlbertForMultipleChoice(TFAlbertPreTrainedModel, TFMultipleChoiceLoss): |
|
|
|
_keys_to_ignore_on_load_unexpected = [r"pooler", r"predictions"] |
|
_keys_to_ignore_on_load_missing = [r"dropout"] |
|
|
|
def __init__(self, config: AlbertConfig, *inputs, **kwargs): |
|
super().__init__(config, *inputs, **kwargs) |
|
|
|
self.albert = TFAlbertMainLayer(config, name="albert") |
|
self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) |
|
self.classifier = tf.keras.layers.Dense( |
|
units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" |
|
) |
|
|
|
@unpack_inputs |
|
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=TFMultipleChoiceModelOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def call( |
|
self, |
|
input_ids: TFModelInputType | None = None, |
|
attention_mask: np.ndarray | tf.Tensor | None = None, |
|
token_type_ids: np.ndarray | tf.Tensor | None = None, |
|
position_ids: np.ndarray | tf.Tensor | None = None, |
|
head_mask: np.ndarray | tf.Tensor | None = None, |
|
inputs_embeds: np.ndarray | tf.Tensor | None = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
labels: np.ndarray | tf.Tensor | None = None, |
|
training: Optional[bool] = False, |
|
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: |
|
r""" |
|
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` |
|
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) |
|
""" |
|
|
|
if input_ids is not None: |
|
num_choices = shape_list(input_ids)[1] |
|
seq_length = shape_list(input_ids)[2] |
|
else: |
|
num_choices = shape_list(inputs_embeds)[1] |
|
seq_length = shape_list(inputs_embeds)[2] |
|
|
|
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None |
|
flat_attention_mask = ( |
|
tf.reshape(tensor=attention_mask, shape=(-1, seq_length)) if attention_mask is not None else None |
|
) |
|
flat_token_type_ids = ( |
|
tf.reshape(tensor=token_type_ids, shape=(-1, seq_length)) if token_type_ids is not None else None |
|
) |
|
flat_position_ids = ( |
|
tf.reshape(tensor=position_ids, shape=(-1, seq_length)) if position_ids is not None else None |
|
) |
|
flat_inputs_embeds = ( |
|
tf.reshape(tensor=inputs_embeds, shape=(-1, seq_length, shape_list(inputs_embeds)[3])) |
|
if inputs_embeds is not None |
|
else None |
|
) |
|
outputs = self.albert( |
|
input_ids=flat_input_ids, |
|
attention_mask=flat_attention_mask, |
|
token_type_ids=flat_token_type_ids, |
|
position_ids=flat_position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=flat_inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
training=training, |
|
) |
|
pooled_output = outputs[1] |
|
pooled_output = self.dropout(inputs=pooled_output, training=training) |
|
logits = self.classifier(inputs=pooled_output) |
|
reshaped_logits = tf.reshape(tensor=logits, shape=(-1, num_choices)) |
|
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=reshaped_logits) |
|
|
|
if not return_dict: |
|
output = (reshaped_logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TFMultipleChoiceModelOutput( |
|
loss=loss, |
|
logits=reshaped_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|