|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import importlib.util |
|
import os |
|
import platform |
|
from argparse import ArgumentParser |
|
|
|
import huggingface_hub |
|
|
|
from .. import __version__ as version |
|
from ..utils import ( |
|
is_accelerate_available, |
|
is_flax_available, |
|
is_safetensors_available, |
|
is_tf_available, |
|
is_torch_available, |
|
) |
|
from . import BaseTransformersCLICommand |
|
|
|
|
|
def info_command_factory(_): |
|
return EnvironmentCommand() |
|
|
|
|
|
def download_command_factory(args): |
|
return EnvironmentCommand(args.accelerate_config_file) |
|
|
|
|
|
class EnvironmentCommand(BaseTransformersCLICommand): |
|
@staticmethod |
|
def register_subcommand(parser: ArgumentParser): |
|
download_parser = parser.add_parser("env") |
|
download_parser.set_defaults(func=info_command_factory) |
|
download_parser.add_argument( |
|
"--accelerate-config_file", |
|
default=None, |
|
help="The accelerate config file to use for the default values in the launching script.", |
|
) |
|
download_parser.set_defaults(func=download_command_factory) |
|
|
|
def __init__(self, accelerate_config_file, *args) -> None: |
|
self._accelerate_config_file = accelerate_config_file |
|
|
|
def run(self): |
|
safetensors_version = "not installed" |
|
if is_safetensors_available(): |
|
import safetensors |
|
|
|
safetensors_version = safetensors.__version__ |
|
elif importlib.util.find_spec("safetensors") is not None: |
|
import safetensors |
|
|
|
safetensors_version = f"{safetensors.__version__} but is ignored because of PyTorch version too old." |
|
|
|
accelerate_version = "not installed" |
|
accelerate_config = accelerate_config_str = "not found" |
|
if is_accelerate_available(): |
|
import accelerate |
|
from accelerate.commands.config import default_config_file, load_config_from_file |
|
|
|
accelerate_version = accelerate.__version__ |
|
|
|
if self._accelerate_config_file is not None or os.path.isfile(default_config_file): |
|
accelerate_config = load_config_from_file(self._accelerate_config_file).to_dict() |
|
|
|
accelerate_config_str = ( |
|
"\n".join([f"\t- {prop}: {val}" for prop, val in accelerate_config.items()]) |
|
if isinstance(accelerate_config, dict) |
|
else f"\t{accelerate_config}" |
|
) |
|
|
|
pt_version = "not installed" |
|
pt_cuda_available = "NA" |
|
if is_torch_available(): |
|
import torch |
|
|
|
pt_version = torch.__version__ |
|
pt_cuda_available = torch.cuda.is_available() |
|
|
|
tf_version = "not installed" |
|
tf_cuda_available = "NA" |
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
tf_version = tf.__version__ |
|
try: |
|
|
|
tf_cuda_available = tf.test.is_gpu_available() |
|
except AttributeError: |
|
|
|
tf_cuda_available = bool(tf.config.list_physical_devices("GPU")) |
|
|
|
flax_version = "not installed" |
|
jax_version = "not installed" |
|
jaxlib_version = "not installed" |
|
jax_backend = "NA" |
|
if is_flax_available(): |
|
import flax |
|
import jax |
|
import jaxlib |
|
|
|
flax_version = flax.__version__ |
|
jax_version = jax.__version__ |
|
jaxlib_version = jaxlib.__version__ |
|
jax_backend = jax.lib.xla_bridge.get_backend().platform |
|
|
|
info = { |
|
"`transformers` version": version, |
|
"Platform": platform.platform(), |
|
"Python version": platform.python_version(), |
|
"Huggingface_hub version": huggingface_hub.__version__, |
|
"Safetensors version": f"{safetensors_version}", |
|
"Accelerate version": f"{accelerate_version}", |
|
"Accelerate config": f"{accelerate_config_str}", |
|
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})", |
|
"Tensorflow version (GPU?)": f"{tf_version} ({tf_cuda_available})", |
|
"Flax version (CPU?/GPU?/TPU?)": f"{flax_version} ({jax_backend})", |
|
"Jax version": f"{jax_version}", |
|
"JaxLib version": f"{jaxlib_version}", |
|
"Using GPU in script?": "<fill in>", |
|
"Using distributed or parallel set-up in script?": "<fill in>", |
|
} |
|
|
|
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n") |
|
print(self.format_dict(info)) |
|
|
|
return info |
|
|
|
@staticmethod |
|
def format_dict(d): |
|
return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n" |
|
|