mart9992's picture
m
4c65bff
raw
history blame
1.75 kB
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVision2Seq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class ImageCaptioningTool(PipelineTool):
default_checkpoint = "Salesforce/blip-image-captioning-base"
description = (
"This is a tool that generates a description of an image. It takes an input named `image` which should be the "
"image to caption, and returns a text that contains the description in English."
)
name = "image_captioner"
model_class = AutoModelForVision2Seq
inputs = ["image"]
outputs = ["text"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["vision"])
super().__init__(*args, **kwargs)
def encode(self, image: "Image"):
return self.pre_processor(images=image, return_tensors="pt")
def forward(self, inputs):
return self.model.generate(**inputs)
def decode(self, outputs):
return self.pre_processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()