|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import re |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
|
|
from ..utils import ( |
|
ExplicitEnum, |
|
add_end_docstrings, |
|
is_pytesseract_available, |
|
is_torch_available, |
|
is_vision_available, |
|
logging, |
|
) |
|
from .base import PIPELINE_INIT_ARGS, ChunkPipeline |
|
from .question_answering import select_starts_ends |
|
|
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
from ..image_utils import load_image |
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from ..models.auto.modeling_auto import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES |
|
|
|
TESSERACT_LOADED = False |
|
if is_pytesseract_available(): |
|
TESSERACT_LOADED = True |
|
import pytesseract |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
def normalize_box(box, width, height): |
|
return [ |
|
int(1000 * (box[0] / width)), |
|
int(1000 * (box[1] / height)), |
|
int(1000 * (box[2] / width)), |
|
int(1000 * (box[3] / height)), |
|
] |
|
|
|
|
|
def apply_tesseract(image: "Image.Image", lang: Optional[str], tesseract_config: Optional[str]): |
|
"""Applies Tesseract OCR on a document image, and returns recognized words + normalized bounding boxes.""" |
|
|
|
data = pytesseract.image_to_data(image, lang=lang, output_type="dict", config=tesseract_config) |
|
words, left, top, width, height = data["text"], data["left"], data["top"], data["width"], data["height"] |
|
|
|
|
|
irrelevant_indices = [idx for idx, word in enumerate(words) if not word.strip()] |
|
words = [word for idx, word in enumerate(words) if idx not in irrelevant_indices] |
|
left = [coord for idx, coord in enumerate(left) if idx not in irrelevant_indices] |
|
top = [coord for idx, coord in enumerate(top) if idx not in irrelevant_indices] |
|
width = [coord for idx, coord in enumerate(width) if idx not in irrelevant_indices] |
|
height = [coord for idx, coord in enumerate(height) if idx not in irrelevant_indices] |
|
|
|
|
|
actual_boxes = [] |
|
for x, y, w, h in zip(left, top, width, height): |
|
actual_box = [x, y, x + w, y + h] |
|
actual_boxes.append(actual_box) |
|
|
|
image_width, image_height = image.size |
|
|
|
|
|
normalized_boxes = [] |
|
for box in actual_boxes: |
|
normalized_boxes.append(normalize_box(box, image_width, image_height)) |
|
|
|
if len(words) != len(normalized_boxes): |
|
raise ValueError("Not as many words as there are bounding boxes") |
|
|
|
return words, normalized_boxes |
|
|
|
|
|
class ModelType(ExplicitEnum): |
|
LayoutLM = "layoutlm" |
|
LayoutLMv2andv3 = "layoutlmv2andv3" |
|
VisionEncoderDecoder = "vision_encoder_decoder" |
|
|
|
|
|
@add_end_docstrings(PIPELINE_INIT_ARGS) |
|
class DocumentQuestionAnsweringPipeline(ChunkPipeline): |
|
|
|
""" |
|
Document Question Answering pipeline using any `AutoModelForDocumentQuestionAnswering`. The inputs/outputs are |
|
similar to the (extractive) question answering pipeline; however, the pipeline takes an image (and optional OCR'd |
|
words/boxes) as input instead of text context. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
|
|
>>> document_qa = pipeline(model="impira/layoutlm-document-qa") |
|
>>> document_qa( |
|
... image="https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png", |
|
... question="What is the invoice number?", |
|
... ) |
|
[{'score': 0.425, 'answer': 'us-001', 'start': 16, 'end': 16}] |
|
``` |
|
|
|
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) |
|
|
|
This document question answering pipeline can currently be loaded from [`pipeline`] using the following task |
|
identifier: `"document-question-answering"`. |
|
|
|
The models that this pipeline can use are models that have been fine-tuned on a document question answering task. |
|
See the up-to-date list of available models on |
|
[huggingface.co/models](https://huggingface.co/models?filter=document-question-answering). |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
if self.tokenizer is not None and not self.tokenizer.__class__.__name__.endswith("Fast"): |
|
raise ValueError( |
|
"`DocumentQuestionAnsweringPipeline` requires a fast tokenizer, but a slow tokenizer " |
|
f"(`{self.tokenizer.__class__.__name__}`) is provided." |
|
) |
|
|
|
if self.model.config.__class__.__name__ == "VisionEncoderDecoderConfig": |
|
self.model_type = ModelType.VisionEncoderDecoder |
|
if self.model.config.encoder.model_type != "donut-swin": |
|
raise ValueError("Currently, the only supported VisionEncoderDecoder model is Donut") |
|
else: |
|
self.check_model_type(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES) |
|
if self.model.config.__class__.__name__ == "LayoutLMConfig": |
|
self.model_type = ModelType.LayoutLM |
|
else: |
|
self.model_type = ModelType.LayoutLMv2andv3 |
|
|
|
def _sanitize_parameters( |
|
self, |
|
padding=None, |
|
doc_stride=None, |
|
max_question_len=None, |
|
lang: Optional[str] = None, |
|
tesseract_config: Optional[str] = None, |
|
max_answer_len=None, |
|
max_seq_len=None, |
|
top_k=None, |
|
handle_impossible_answer=None, |
|
timeout=None, |
|
**kwargs, |
|
): |
|
preprocess_params, postprocess_params = {}, {} |
|
if padding is not None: |
|
preprocess_params["padding"] = padding |
|
if doc_stride is not None: |
|
preprocess_params["doc_stride"] = doc_stride |
|
if max_question_len is not None: |
|
preprocess_params["max_question_len"] = max_question_len |
|
if max_seq_len is not None: |
|
preprocess_params["max_seq_len"] = max_seq_len |
|
if lang is not None: |
|
preprocess_params["lang"] = lang |
|
if tesseract_config is not None: |
|
preprocess_params["tesseract_config"] = tesseract_config |
|
if timeout is not None: |
|
preprocess_params["timeout"] = timeout |
|
|
|
if top_k is not None: |
|
if top_k < 1: |
|
raise ValueError(f"top_k parameter should be >= 1 (got {top_k})") |
|
postprocess_params["top_k"] = top_k |
|
if max_answer_len is not None: |
|
if max_answer_len < 1: |
|
raise ValueError(f"max_answer_len parameter should be >= 1 (got {max_answer_len}") |
|
postprocess_params["max_answer_len"] = max_answer_len |
|
if handle_impossible_answer is not None: |
|
postprocess_params["handle_impossible_answer"] = handle_impossible_answer |
|
|
|
return preprocess_params, {}, postprocess_params |
|
|
|
def __call__( |
|
self, |
|
image: Union["Image.Image", str], |
|
question: Optional[str] = None, |
|
word_boxes: Tuple[str, List[float]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Answer the question(s) given as inputs by using the document(s). A document is defined as an image and an |
|
optional list of (word, box) tuples which represent the text in the document. If the `word_boxes` are not |
|
provided, it will use the Tesseract OCR engine (if available) to extract the words and boxes automatically for |
|
LayoutLM-like models which require them as input. For Donut, no OCR is run. |
|
|
|
You can invoke the pipeline several ways: |
|
|
|
- `pipeline(image=image, question=question)` |
|
- `pipeline(image=image, question=question, word_boxes=word_boxes)` |
|
- `pipeline([{"image": image, "question": question}])` |
|
- `pipeline([{"image": image, "question": question, "word_boxes": word_boxes}])` |
|
|
|
Args: |
|
image (`str` or `PIL.Image`): |
|
The pipeline handles three types of images: |
|
|
|
- A string containing a http link pointing to an image |
|
- A string containing a local path to an image |
|
- An image loaded in PIL directly |
|
|
|
The pipeline accepts either a single image or a batch of images. If given a single image, it can be |
|
broadcasted to multiple questions. |
|
question (`str`): |
|
A question to ask of the document. |
|
word_boxes (`List[str, Tuple[float, float, float, float]]`, *optional*): |
|
A list of words and bounding boxes (normalized 0->1000). If you provide this optional input, then the |
|
pipeline will use these words and boxes instead of running OCR on the image to derive them for models |
|
that need them (e.g. LayoutLM). This allows you to reuse OCR'd results across many invocations of the |
|
pipeline without having to re-run it each time. |
|
top_k (`int`, *optional*, defaults to 1): |
|
The number of answers to return (will be chosen by order of likelihood). Note that we return less than |
|
top_k answers if there are not enough options available within the context. |
|
doc_stride (`int`, *optional*, defaults to 128): |
|
If the words in the document are too long to fit with the question for the model, it will be split in |
|
several chunks with some overlap. This argument controls the size of that overlap. |
|
max_answer_len (`int`, *optional*, defaults to 15): |
|
The maximum length of predicted answers (e.g., only answers with a shorter length are considered). |
|
max_seq_len (`int`, *optional*, defaults to 384): |
|
The maximum length of the total sentence (context + question) in tokens of each chunk passed to the |
|
model. The context will be split in several chunks (using `doc_stride` as overlap) if needed. |
|
max_question_len (`int`, *optional*, defaults to 64): |
|
The maximum length of the question after tokenization. It will be truncated if needed. |
|
handle_impossible_answer (`bool`, *optional*, defaults to `False`): |
|
Whether or not we accept impossible as an answer. |
|
lang (`str`, *optional*): |
|
Language to use while running OCR. Defaults to english. |
|
tesseract_config (`str`, *optional*): |
|
Additional flags to pass to tesseract while running OCR. |
|
timeout (`float`, *optional*, defaults to None): |
|
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and |
|
the call may block forever. |
|
|
|
Return: |
|
A `dict` or a list of `dict`: Each result comes as a dictionary with the following keys: |
|
|
|
- **score** (`float`) -- The probability associated to the answer. |
|
- **start** (`int`) -- The start word index of the answer (in the OCR'd version of the input or provided |
|
`word_boxes`). |
|
- **end** (`int`) -- The end word index of the answer (in the OCR'd version of the input or provided |
|
`word_boxes`). |
|
- **answer** (`str`) -- The answer to the question. |
|
- **words** (`list[int]`) -- The index of each word/box pair that is in the answer |
|
""" |
|
if isinstance(question, str): |
|
inputs = {"question": question, "image": image} |
|
if word_boxes is not None: |
|
inputs["word_boxes"] = word_boxes |
|
else: |
|
inputs = image |
|
return super().__call__(inputs, **kwargs) |
|
|
|
def preprocess( |
|
self, |
|
input, |
|
padding="do_not_pad", |
|
doc_stride=None, |
|
max_seq_len=None, |
|
word_boxes: Tuple[str, List[float]] = None, |
|
lang=None, |
|
tesseract_config="", |
|
timeout=None, |
|
): |
|
|
|
|
|
if max_seq_len is None: |
|
max_seq_len = self.tokenizer.model_max_length |
|
|
|
if doc_stride is None: |
|
doc_stride = min(max_seq_len // 2, 256) |
|
|
|
image = None |
|
image_features = {} |
|
if input.get("image", None) is not None: |
|
image = load_image(input["image"], timeout=timeout) |
|
if self.image_processor is not None: |
|
image_features.update(self.image_processor(images=image, return_tensors=self.framework)) |
|
elif self.feature_extractor is not None: |
|
image_features.update(self.feature_extractor(images=image, return_tensors=self.framework)) |
|
elif self.model_type == ModelType.VisionEncoderDecoder: |
|
raise ValueError("If you are using a VisionEncoderDecoderModel, you must provide a feature extractor") |
|
|
|
words, boxes = None, None |
|
if not self.model_type == ModelType.VisionEncoderDecoder: |
|
if "word_boxes" in input: |
|
words = [x[0] for x in input["word_boxes"]] |
|
boxes = [x[1] for x in input["word_boxes"]] |
|
elif "words" in image_features and "boxes" in image_features: |
|
words = image_features.pop("words")[0] |
|
boxes = image_features.pop("boxes")[0] |
|
elif image is not None: |
|
if not TESSERACT_LOADED: |
|
raise ValueError( |
|
"If you provide an image without word_boxes, then the pipeline will run OCR using Tesseract," |
|
" but pytesseract is not available" |
|
) |
|
if TESSERACT_LOADED: |
|
words, boxes = apply_tesseract(image, lang=lang, tesseract_config=tesseract_config) |
|
else: |
|
raise ValueError( |
|
"You must provide an image or word_boxes. If you provide an image, the pipeline will automatically" |
|
" run OCR to derive words and boxes" |
|
) |
|
|
|
if self.tokenizer.padding_side != "right": |
|
raise ValueError( |
|
"Document question answering only supports tokenizers whose padding side is 'right', not" |
|
f" {self.tokenizer.padding_side}" |
|
) |
|
|
|
if self.model_type == ModelType.VisionEncoderDecoder: |
|
task_prompt = f'<s_docvqa><s_question>{input["question"]}</s_question><s_answer>' |
|
|
|
encoding = { |
|
"inputs": image_features["pixel_values"], |
|
"decoder_input_ids": self.tokenizer( |
|
task_prompt, add_special_tokens=False, return_tensors=self.framework |
|
).input_ids, |
|
"return_dict_in_generate": True, |
|
} |
|
yield { |
|
**encoding, |
|
"p_mask": None, |
|
"word_ids": None, |
|
"words": None, |
|
"output_attentions": True, |
|
"is_last": True, |
|
} |
|
else: |
|
tokenizer_kwargs = {} |
|
if self.model_type == ModelType.LayoutLM: |
|
tokenizer_kwargs["text"] = input["question"].split() |
|
tokenizer_kwargs["text_pair"] = words |
|
tokenizer_kwargs["is_split_into_words"] = True |
|
else: |
|
tokenizer_kwargs["text"] = [input["question"]] |
|
tokenizer_kwargs["text_pair"] = [words] |
|
tokenizer_kwargs["boxes"] = [boxes] |
|
|
|
encoding = self.tokenizer( |
|
padding=padding, |
|
max_length=max_seq_len, |
|
stride=doc_stride, |
|
return_token_type_ids=True, |
|
truncation="only_second", |
|
return_overflowing_tokens=True, |
|
**tokenizer_kwargs, |
|
) |
|
|
|
|
|
encoding.pop("overflow_to_sample_mapping", None) |
|
|
|
num_spans = len(encoding["input_ids"]) |
|
|
|
|
|
|
|
|
|
p_mask = [[tok != 1 for tok in encoding.sequence_ids(span_id)] for span_id in range(num_spans)] |
|
for span_idx in range(num_spans): |
|
if self.framework == "pt": |
|
span_encoding = {k: torch.tensor(v[span_idx : span_idx + 1]) for (k, v) in encoding.items()} |
|
if "pixel_values" in image_features: |
|
span_encoding["image"] = image_features["pixel_values"] |
|
else: |
|
raise ValueError("Unsupported: Tensorflow preprocessing for DocumentQuestionAnsweringPipeline") |
|
|
|
input_ids_span_idx = encoding["input_ids"][span_idx] |
|
|
|
if self.tokenizer.cls_token_id is not None: |
|
cls_indices = np.nonzero(np.array(input_ids_span_idx) == self.tokenizer.cls_token_id)[0] |
|
for cls_index in cls_indices: |
|
p_mask[span_idx][cls_index] = 0 |
|
|
|
|
|
|
|
if "boxes" not in tokenizer_kwargs: |
|
bbox = [] |
|
for input_id, sequence_id, word_id in zip( |
|
encoding.input_ids[span_idx], |
|
encoding.sequence_ids(span_idx), |
|
encoding.word_ids(span_idx), |
|
): |
|
if sequence_id == 1: |
|
bbox.append(boxes[word_id]) |
|
elif input_id == self.tokenizer.sep_token_id: |
|
bbox.append([1000] * 4) |
|
else: |
|
bbox.append([0] * 4) |
|
|
|
if self.framework == "pt": |
|
span_encoding["bbox"] = torch.tensor(bbox).unsqueeze(0) |
|
elif self.framework == "tf": |
|
raise ValueError("Unsupported: Tensorflow preprocessing for DocumentQuestionAnsweringPipeline") |
|
yield { |
|
**span_encoding, |
|
"p_mask": p_mask[span_idx], |
|
"word_ids": encoding.word_ids(span_idx), |
|
"words": words, |
|
"is_last": span_idx == num_spans - 1, |
|
} |
|
|
|
def _forward(self, model_inputs): |
|
p_mask = model_inputs.pop("p_mask", None) |
|
word_ids = model_inputs.pop("word_ids", None) |
|
words = model_inputs.pop("words", None) |
|
is_last = model_inputs.pop("is_last", False) |
|
|
|
if self.model_type == ModelType.VisionEncoderDecoder: |
|
model_outputs = self.model.generate(**model_inputs) |
|
else: |
|
model_outputs = self.model(**model_inputs) |
|
|
|
model_outputs = dict(model_outputs.items()) |
|
model_outputs["p_mask"] = p_mask |
|
model_outputs["word_ids"] = word_ids |
|
model_outputs["words"] = words |
|
model_outputs["attention_mask"] = model_inputs.get("attention_mask", None) |
|
model_outputs["is_last"] = is_last |
|
return model_outputs |
|
|
|
def postprocess(self, model_outputs, top_k=1, **kwargs): |
|
if self.model_type == ModelType.VisionEncoderDecoder: |
|
answers = [self.postprocess_encoder_decoder_single(o) for o in model_outputs] |
|
else: |
|
answers = self.postprocess_extractive_qa(model_outputs, top_k=top_k, **kwargs) |
|
|
|
answers = sorted(answers, key=lambda x: x.get("score", 0), reverse=True)[:top_k] |
|
return answers |
|
|
|
def postprocess_encoder_decoder_single(self, model_outputs, **kwargs): |
|
sequence = self.tokenizer.batch_decode(model_outputs["sequences"])[0] |
|
|
|
|
|
|
|
sequence = sequence.replace(self.tokenizer.eos_token, "").replace(self.tokenizer.pad_token, "") |
|
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() |
|
ret = { |
|
"answer": None, |
|
} |
|
|
|
answer = re.search(r"<s_answer>(.*)</s_answer>", sequence) |
|
if answer is not None: |
|
ret["answer"] = answer.group(1).strip() |
|
return ret |
|
|
|
def postprocess_extractive_qa( |
|
self, model_outputs, top_k=1, handle_impossible_answer=False, max_answer_len=15, **kwargs |
|
): |
|
min_null_score = 1000000 |
|
answers = [] |
|
for output in model_outputs: |
|
words = output["words"] |
|
|
|
starts, ends, scores, min_null_score = select_starts_ends( |
|
start=output["start_logits"], |
|
end=output["end_logits"], |
|
p_mask=output["p_mask"], |
|
attention_mask=output["attention_mask"].numpy() |
|
if output.get("attention_mask", None) is not None |
|
else None, |
|
min_null_score=min_null_score, |
|
top_k=top_k, |
|
handle_impossible_answer=handle_impossible_answer, |
|
max_answer_len=max_answer_len, |
|
) |
|
word_ids = output["word_ids"] |
|
for start, end, score in zip(starts, ends, scores): |
|
word_start, word_end = word_ids[start], word_ids[end] |
|
if word_start is not None and word_end is not None: |
|
answers.append( |
|
{ |
|
"score": float(score), |
|
"answer": " ".join(words[word_start : word_end + 1]), |
|
"start": word_start, |
|
"end": word_end, |
|
} |
|
) |
|
|
|
if handle_impossible_answer: |
|
answers.append({"score": min_null_score, "answer": "", "start": 0, "end": 0}) |
|
|
|
return answers |
|
|