|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Functions and classes related to optimization (weight updates).""" |
|
|
|
|
|
import re |
|
from typing import Callable, List, Optional, Union |
|
|
|
import tensorflow as tf |
|
|
|
|
|
try: |
|
from tensorflow.keras.optimizers.legacy import Adam |
|
except ImportError: |
|
from tensorflow.keras.optimizers import Adam |
|
|
|
|
|
class WarmUp(tf.keras.optimizers.schedules.LearningRateSchedule): |
|
""" |
|
Applies a warmup schedule on a given learning rate decay schedule. |
|
|
|
Args: |
|
initial_learning_rate (`float`): |
|
The initial learning rate for the schedule after the warmup (so this will be the learning rate at the end |
|
of the warmup). |
|
decay_schedule_fn (`Callable`): |
|
The schedule function to apply after the warmup for the rest of training. |
|
warmup_steps (`int`): |
|
The number of steps for the warmup part of training. |
|
power (`float`, *optional*, defaults to 1.0): |
|
The power to use for the polynomial warmup (defaults is a linear warmup). |
|
name (`str`, *optional*): |
|
Optional name prefix for the returned tensors during the schedule. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
initial_learning_rate: float, |
|
decay_schedule_fn: Callable, |
|
warmup_steps: int, |
|
power: float = 1.0, |
|
name: str = None, |
|
): |
|
super().__init__() |
|
self.initial_learning_rate = initial_learning_rate |
|
self.warmup_steps = warmup_steps |
|
self.power = power |
|
self.decay_schedule_fn = decay_schedule_fn |
|
self.name = name |
|
|
|
def __call__(self, step): |
|
with tf.name_scope(self.name or "WarmUp") as name: |
|
|
|
|
|
global_step_float = tf.cast(step, tf.float32) |
|
warmup_steps_float = tf.cast(self.warmup_steps, tf.float32) |
|
warmup_percent_done = global_step_float / warmup_steps_float |
|
warmup_learning_rate = self.initial_learning_rate * tf.math.pow(warmup_percent_done, self.power) |
|
return tf.cond( |
|
global_step_float < warmup_steps_float, |
|
lambda: warmup_learning_rate, |
|
lambda: self.decay_schedule_fn(step - self.warmup_steps), |
|
name=name, |
|
) |
|
|
|
def get_config(self): |
|
return { |
|
"initial_learning_rate": self.initial_learning_rate, |
|
"decay_schedule_fn": self.decay_schedule_fn, |
|
"warmup_steps": self.warmup_steps, |
|
"power": self.power, |
|
"name": self.name, |
|
} |
|
|
|
|
|
def create_optimizer( |
|
init_lr: float, |
|
num_train_steps: int, |
|
num_warmup_steps: int, |
|
min_lr_ratio: float = 0.0, |
|
adam_beta1: float = 0.9, |
|
adam_beta2: float = 0.999, |
|
adam_epsilon: float = 1e-8, |
|
adam_clipnorm: Optional[float] = None, |
|
adam_global_clipnorm: Optional[float] = None, |
|
weight_decay_rate: float = 0.0, |
|
power: float = 1.0, |
|
include_in_weight_decay: Optional[List[str]] = None, |
|
): |
|
""" |
|
Creates an optimizer with a learning rate schedule using a warmup phase followed by a linear decay. |
|
|
|
Args: |
|
init_lr (`float`): |
|
The desired learning rate at the end of the warmup phase. |
|
num_train_steps (`int`): |
|
The total number of training steps. |
|
num_warmup_steps (`int`): |
|
The number of warmup steps. |
|
min_lr_ratio (`float`, *optional*, defaults to 0): |
|
The final learning rate at the end of the linear decay will be `init_lr * min_lr_ratio`. |
|
adam_beta1 (`float`, *optional*, defaults to 0.9): |
|
The beta1 to use in Adam. |
|
adam_beta2 (`float`, *optional*, defaults to 0.999): |
|
The beta2 to use in Adam. |
|
adam_epsilon (`float`, *optional*, defaults to 1e-8): |
|
The epsilon to use in Adam. |
|
adam_clipnorm (`float`, *optional*, defaults to `None`): |
|
If not `None`, clip the gradient norm for each weight tensor to this value. |
|
adam_global_clipnorm (`float`, *optional*, defaults to `None`) |
|
If not `None`, clip gradient norm to this value. When using this argument, the norm is computed over all |
|
weight tensors, as if they were concatenated into a single vector. |
|
weight_decay_rate (`float`, *optional*, defaults to 0): |
|
The weight decay to use. |
|
power (`float`, *optional*, defaults to 1.0): |
|
The power to use for PolynomialDecay. |
|
include_in_weight_decay (`List[str]`, *optional*): |
|
List of the parameter names (or re patterns) to apply weight decay to. If none is passed, weight decay is |
|
applied to all parameters except bias and layer norm parameters. |
|
""" |
|
|
|
lr_schedule = tf.keras.optimizers.schedules.PolynomialDecay( |
|
initial_learning_rate=init_lr, |
|
decay_steps=num_train_steps - num_warmup_steps, |
|
end_learning_rate=init_lr * min_lr_ratio, |
|
power=power, |
|
) |
|
if num_warmup_steps: |
|
lr_schedule = WarmUp( |
|
initial_learning_rate=init_lr, |
|
decay_schedule_fn=lr_schedule, |
|
warmup_steps=num_warmup_steps, |
|
) |
|
if weight_decay_rate > 0.0: |
|
optimizer = AdamWeightDecay( |
|
learning_rate=lr_schedule, |
|
weight_decay_rate=weight_decay_rate, |
|
beta_1=adam_beta1, |
|
beta_2=adam_beta2, |
|
epsilon=adam_epsilon, |
|
clipnorm=adam_clipnorm, |
|
global_clipnorm=adam_global_clipnorm, |
|
exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"], |
|
include_in_weight_decay=include_in_weight_decay, |
|
) |
|
else: |
|
optimizer = tf.keras.optimizers.Adam( |
|
learning_rate=lr_schedule, |
|
beta_1=adam_beta1, |
|
beta_2=adam_beta2, |
|
epsilon=adam_epsilon, |
|
clipnorm=adam_clipnorm, |
|
global_clipnorm=adam_global_clipnorm, |
|
) |
|
|
|
|
|
return optimizer, lr_schedule |
|
|
|
|
|
class AdamWeightDecay(Adam): |
|
""" |
|
Adam enables L2 weight decay and clip_by_global_norm on gradients. Just adding the square of the weights to the |
|
loss function is *not* the correct way of using L2 regularization/weight decay with Adam, since that will interact |
|
with the m and v parameters in strange ways as shown in [Decoupled Weight Decay |
|
Regularization](https://arxiv.org/abs/1711.05101). |
|
|
|
Instead we want to decay the weights in a manner that doesn't interact with the m/v parameters. This is equivalent |
|
to adding the square of the weights to the loss with plain (non-momentum) SGD. |
|
|
|
Args: |
|
learning_rate (`Union[float, tf.keras.optimizers.schedules.LearningRateSchedule]`, *optional*, defaults to 0.001): |
|
The learning rate to use or a schedule. |
|
beta_1 (`float`, *optional*, defaults to 0.9): |
|
The beta1 parameter in Adam, which is the exponential decay rate for the 1st momentum estimates. |
|
beta_2 (`float`, *optional*, defaults to 0.999): |
|
The beta2 parameter in Adam, which is the exponential decay rate for the 2nd momentum estimates. |
|
epsilon (`float`, *optional*, defaults to 1e-07): |
|
The epsilon parameter in Adam, which is a small constant for numerical stability. |
|
amsgrad (`bool`, *optional*, defaults to `False`): |
|
Whether to apply AMSGrad variant of this algorithm or not, see [On the Convergence of Adam and |
|
Beyond](https://arxiv.org/abs/1904.09237). |
|
weight_decay_rate (`float`, *optional*, defaults to 0.0): |
|
The weight decay to apply. |
|
include_in_weight_decay (`List[str]`, *optional*): |
|
List of the parameter names (or re patterns) to apply weight decay to. If none is passed, weight decay is |
|
applied to all parameters by default (unless they are in `exclude_from_weight_decay`). |
|
exclude_from_weight_decay (`List[str]`, *optional*): |
|
List of the parameter names (or re patterns) to exclude from applying weight decay to. If a |
|
`include_in_weight_decay` is passed, the names in it will supersede this list. |
|
name (`str`, *optional*, defaults to `"AdamWeightDecay"`): |
|
Optional name for the operations created when applying gradients. |
|
kwargs (`Dict[str, Any]`, *optional*): |
|
Keyword arguments. Allowed to be {`clipnorm`, `clipvalue`, `lr`, `decay`}. `clipnorm` is clip gradients by |
|
norm; `clipvalue` is clip gradients by value, `decay` is included for backward compatibility to allow time |
|
inverse decay of learning rate. `lr` is included for backward compatibility, recommended to use |
|
`learning_rate` instead. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
learning_rate: Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001, |
|
beta_1: float = 0.9, |
|
beta_2: float = 0.999, |
|
epsilon: float = 1e-7, |
|
amsgrad: bool = False, |
|
weight_decay_rate: float = 0.0, |
|
include_in_weight_decay: Optional[List[str]] = None, |
|
exclude_from_weight_decay: Optional[List[str]] = None, |
|
name: str = "AdamWeightDecay", |
|
**kwargs, |
|
): |
|
super().__init__(learning_rate, beta_1, beta_2, epsilon, amsgrad, name, **kwargs) |
|
self.weight_decay_rate = weight_decay_rate |
|
self._include_in_weight_decay = include_in_weight_decay |
|
self._exclude_from_weight_decay = exclude_from_weight_decay |
|
|
|
@classmethod |
|
def from_config(cls, config): |
|
"""Creates an optimizer from its config with WarmUp custom object.""" |
|
custom_objects = {"WarmUp": WarmUp} |
|
return super(AdamWeightDecay, cls).from_config(config, custom_objects=custom_objects) |
|
|
|
def _prepare_local(self, var_device, var_dtype, apply_state): |
|
super(AdamWeightDecay, self)._prepare_local(var_device, var_dtype, apply_state) |
|
apply_state[(var_device, var_dtype)]["weight_decay_rate"] = tf.constant( |
|
self.weight_decay_rate, name="adam_weight_decay_rate" |
|
) |
|
|
|
def _decay_weights_op(self, var, learning_rate, apply_state): |
|
do_decay = self._do_use_weight_decay(var.name) |
|
if do_decay: |
|
return var.assign_sub( |
|
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"], |
|
use_locking=self._use_locking, |
|
) |
|
return tf.no_op() |
|
|
|
def apply_gradients(self, grads_and_vars, name=None, **kwargs): |
|
grads, tvars = list(zip(*grads_and_vars)) |
|
return super(AdamWeightDecay, self).apply_gradients(zip(grads, tvars), name=name, **kwargs) |
|
|
|
def _get_lr(self, var_device, var_dtype, apply_state): |
|
"""Retrieves the learning rate with the given state.""" |
|
if apply_state is None: |
|
return self._decayed_lr_t[var_dtype], {} |
|
|
|
apply_state = apply_state or {} |
|
coefficients = apply_state.get((var_device, var_dtype)) |
|
if coefficients is None: |
|
coefficients = self._fallback_apply_state(var_device, var_dtype) |
|
apply_state[(var_device, var_dtype)] = coefficients |
|
|
|
return coefficients["lr_t"], {"apply_state": apply_state} |
|
|
|
def _resource_apply_dense(self, grad, var, apply_state=None): |
|
lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state) |
|
decay = self._decay_weights_op(var, lr_t, apply_state) |
|
with tf.control_dependencies([decay]): |
|
return super(AdamWeightDecay, self)._resource_apply_dense(grad, var, **kwargs) |
|
|
|
def _resource_apply_sparse(self, grad, var, indices, apply_state=None): |
|
lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state) |
|
decay = self._decay_weights_op(var, lr_t, apply_state) |
|
with tf.control_dependencies([decay]): |
|
return super(AdamWeightDecay, self)._resource_apply_sparse(grad, var, indices, **kwargs) |
|
|
|
def get_config(self): |
|
config = super().get_config() |
|
config.update({"weight_decay_rate": self.weight_decay_rate}) |
|
return config |
|
|
|
def _do_use_weight_decay(self, param_name): |
|
"""Whether to use L2 weight decay for `param_name`.""" |
|
if self.weight_decay_rate == 0: |
|
return False |
|
|
|
if self._include_in_weight_decay: |
|
for r in self._include_in_weight_decay: |
|
if re.search(r, param_name) is not None: |
|
return True |
|
|
|
if self._exclude_from_weight_decay: |
|
for r in self._exclude_from_weight_decay: |
|
if re.search(r, param_name) is not None: |
|
return False |
|
return True |
|
|
|
|
|
|
|
class GradientAccumulator(object): |
|
""" |
|
Gradient accumulation utility. When used with a distribution strategy, the accumulator should be called in a |
|
replica context. Gradients will be accumulated locally on each replica and without synchronization. Users should |
|
then call `.gradients`, scale the gradients if required, and pass the result to `apply_gradients`. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self): |
|
"""Initializes the accumulator.""" |
|
self._gradients = [] |
|
self._accum_steps = None |
|
|
|
@property |
|
def step(self): |
|
"""Number of accumulated steps.""" |
|
if self._accum_steps is None: |
|
self._accum_steps = tf.Variable( |
|
tf.constant(0, dtype=tf.int64), |
|
trainable=False, |
|
synchronization=tf.VariableSynchronization.ON_READ, |
|
aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, |
|
) |
|
|
|
return self._accum_steps.value() |
|
|
|
@property |
|
def gradients(self): |
|
"""The accumulated gradients on the current replica.""" |
|
if not self._gradients: |
|
raise ValueError("The accumulator should be called first to initialize the gradients") |
|
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] |
|
|
|
def __call__(self, gradients): |
|
"""Accumulates `gradients` on the current replica.""" |
|
if not self._gradients: |
|
_ = self.step |
|
self._gradients.extend( |
|
[ |
|
tf.Variable( |
|
tf.zeros_like(gradient), |
|
trainable=False, |
|
synchronization=tf.VariableSynchronization.ON_READ, |
|
aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, |
|
) |
|
if gradient is not None |
|
else gradient |
|
for gradient in gradients |
|
] |
|
) |
|
if len(gradients) != len(self._gradients): |
|
raise ValueError(f"Expected {len(self._gradients)} gradients, but got {len(gradients)}") |
|
|
|
for accum_gradient, gradient in zip(self._gradients, gradients): |
|
if accum_gradient is not None and gradient is not None: |
|
accum_gradient.assign_add(gradient) |
|
|
|
self._accum_steps.assign_add(1) |
|
|
|
def reset(self): |
|
"""Resets the accumulated gradients on the current replica.""" |
|
if not self._gradients: |
|
return |
|
self._accum_steps.assign(0) |
|
for gradient in self._gradients: |
|
if gradient is not None: |
|
gradient.assign(tf.zeros_like(gradient)) |
|
|