|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch M-CTC-T model.""" |
|
|
|
|
|
import math |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
|
|
from ....activations import ACT2FN |
|
from ....file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward |
|
from ....integrations.deepspeed import is_deepspeed_zero3_enabled |
|
from ....modeling_outputs import BaseModelOutput, CausalLMOutput |
|
from ....modeling_utils import ( |
|
PreTrainedModel, |
|
apply_chunking_to_forward, |
|
find_pruneable_heads_and_indices, |
|
prune_linear_layer, |
|
) |
|
from ....utils import logging |
|
from .configuration_mctct import MCTCTConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_HIDDEN_STATES_START_POSITION = 1 |
|
|
|
_CONFIG_FOR_DOC = "MCTCTConfig" |
|
|
|
|
|
_CHECKPOINT_FOR_DOC = "speechbrain/m-ctc-t-large" |
|
_EXPECTED_OUTPUT_SHAPE = [1, 195, 1536] |
|
|
|
|
|
_CTC_EXPECTED_OUTPUT = '"Mr. Quilter is the apostle of the middle classes, and we\'re glad to welcome his gospel."' |
|
_CTC_EXPECTED_LOSS = 1885.65 |
|
|
|
|
|
MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"speechbrain/m-ctc-t-large", |
|
|
|
] |
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) |
|
|
|
|
|
class MCTCTConv1dSubsampler(nn.Module): |
|
""" |
|
Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation |
|
via gated linear units (https://arxiv.org/abs/1911.08460) |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.glu_dim = config.conv_glu_dim |
|
|
|
self.dropout = nn.Dropout(config.conv_dropout) |
|
|
|
self.num_layers = config.num_conv_layers |
|
self.in_channels = config.input_feat_per_channel * config.input_channels |
|
|
|
if self.num_layers > 1: |
|
if config.conv_channels is None: |
|
raise ValueError( |
|
"Need to specify `conv_channels` configuration in `MCTCTConfig` to use multiple convolution" |
|
" layers." |
|
) |
|
|
|
self.mid_channels = config.conv_channels |
|
else: |
|
self.mid_channels = None |
|
|
|
self.out_channels = config.hidden_size * 2 |
|
self.kernel_size = config.conv_kernel |
|
self.stride = config.conv_stride |
|
|
|
|
|
|
|
|
|
self.conv_layers = nn.ModuleList( |
|
nn.Conv1d( |
|
self.in_channels if i == 0 else self.mid_channels[i], |
|
self.mid_channels[i] if i < self.num_layers - 1 else self.out_channels, |
|
kernel_size=k, |
|
stride=self.stride[i], |
|
padding="valid", |
|
) |
|
for i, k in enumerate(self.kernel_size) |
|
) |
|
|
|
def forward(self, input_features): |
|
|
|
|
|
padding = sum([size // 2 for size in self.kernel_size]) |
|
|
|
input_features = torch.nn.functional.pad(input_features, (0, 0, padding, padding), "constant", 0) |
|
hidden_states = input_features.transpose(1, 2).contiguous() |
|
for conv in self.conv_layers: |
|
hidden_states = conv(hidden_states) |
|
hidden_states = nn.functional.glu(hidden_states, dim=self.glu_dim) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).contiguous() |
|
return hidden_states |
|
|
|
|
|
class MCTCTEmbeddings(nn.Module): |
|
"""Construct the embeddings from word, position and token_type embeddings.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) |
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) |
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) |
|
|
|
|
|
|
|
|
|
self.LayerNorm = MCTCTLayerNorm() |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
|
|
self.register_buffer( |
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False |
|
) |
|
self.register_buffer( |
|
"token_type_ids", |
|
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device), |
|
persistent=False, |
|
) |
|
|
|
def forward( |
|
self, input_features=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 |
|
): |
|
input_shape = input_features.size() if input_features is not None else inputs_embeds.size()[:-1] |
|
|
|
seq_length = input_shape[1] |
|
|
|
if position_ids is None: |
|
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] |
|
|
|
|
|
|
|
|
|
if token_type_ids is None: |
|
if hasattr(self, "token_type_ids"): |
|
buffered_token_type_ids = self.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_features) |
|
|
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
|
|
embeddings = inputs_embeds + token_type_embeddings |
|
|
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
|
|
class MCTCTSelfAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): |
|
raise ValueError( |
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " |
|
f"heads ({config.num_attention_heads})" |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = config.attention_head_dim |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=False) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=False) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
|
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) |
|
|
|
self.is_decoder = config.is_decoder |
|
|
|
def transpose_for_scores(self, x): |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(*new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def reshape_fortran(self, x, shape): |
|
if len(x.shape) > 0: |
|
x = x.permute(*reversed(range(len(x.shape)))) |
|
return x.reshape(*reversed(shape)).permute(*reversed(range(len(shape)))) |
|
|
|
def relative_position_embedding_rotate(self, scores): |
|
|
|
|
|
|
|
scores = scores.permute(0, 2, 3, 1) |
|
|
|
batch, hidden_state, seq_len, heads = scores.shape |
|
|
|
|
|
scores = torch.cat((scores, torch.zeros((batch, seq_len, seq_len, heads), device=scores.device)), dim=1) |
|
|
|
|
|
scores = self.reshape_fortran(scores, [batch, (hidden_state + seq_len) * seq_len, 1, heads]) |
|
|
|
|
|
scores = scores[:, : (seq_len + hidden_state - 1) * seq_len] |
|
|
|
|
|
scores = self.reshape_fortran(scores, [batch, hidden_state + seq_len - 1, seq_len, heads]) |
|
|
|
halfpoint = hidden_state // 2 |
|
scores = scores[:, halfpoint : halfpoint + seq_len].transpose(1, 2) |
|
|
|
return scores.permute(0, 3, 1, 2) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
output_attentions=False, |
|
): |
|
mixed_query_layer = self.query(hidden_states) |
|
mixed_query_layer = mixed_query_layer / math.sqrt(self.attention_head_size) |
|
|
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
|
|
positional_embedding = self.distance_embedding.weight |
|
relative_position_scores = torch.einsum("lh, bche -> bcle", positional_embedding, query_layer.transpose(2, 3)) |
|
|
|
relative_position_scores = self.relative_position_embedding_rotate(relative_position_scores) |
|
attention_scores = attention_scores + relative_position_scores |
|
|
|
if attention_mask is not None: |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).flatten(start_dim=-2) |
|
|
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
|
|
return outputs |
|
|
|
|
|
class MCTCTLayerNorm(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.singleton_weight = nn.Parameter(torch.ones(1)) |
|
self.singleton_bias = nn.Parameter(torch.zeros(1)) |
|
|
|
def forward(self, hidden_states): |
|
return (hidden_states * self.singleton_weight) + self.singleton_bias |
|
|
|
|
|
class MCTCTSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=False) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class MCTCTAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.self = MCTCTSelfAttention(config) |
|
self.output = MCTCTSelfOutput(config) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads |
|
) |
|
|
|
|
|
self.self.query = prune_linear_layer(self.self.query, index) |
|
self.self.key = prune_linear_layer(self.self.key, index) |
|
self.self.value = prune_linear_layer(self.self.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) |
|
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
output_attentions=False, |
|
): |
|
self_outputs = self.self( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
output_attentions, |
|
) |
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
outputs = (attention_output,) + self_outputs[1:] |
|
|
|
return outputs |
|
|
|
|
|
class MCTCTIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class MCTCTOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class MCTCTLayer(nn.Module): |
|
def __init__(self, config: MCTCTConfig): |
|
super().__init__() |
|
|
|
self.seq_len_dim = 1 |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
|
|
self.intermediate = MCTCTIntermediate(config) |
|
self.attention = MCTCTAttention(config) |
|
self.is_decoder = config.is_decoder |
|
self.output = MCTCTOutput(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
output_attentions=False, |
|
): |
|
self_attention_outputs = self.attention( |
|
hidden_states, attention_mask, head_mask, output_attentions=output_attentions |
|
) |
|
attention_output = self_attention_outputs[0] |
|
outputs = self_attention_outputs[1:] |
|
|
|
layer_output = apply_chunking_to_forward( |
|
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output |
|
) |
|
|
|
outputs = (layer_output,) + outputs |
|
|
|
return outputs |
|
|
|
def feed_forward_chunk(self, attention_output): |
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
class MCTCTPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = MCTCTConfig |
|
base_model_prefix = "mctct" |
|
main_input_name = "input_features" |
|
supports_gradient_checkpointing = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
elif isinstance(module, MCTCTLayerNorm): |
|
module.singleton_weight.data.fill_(1.0) |
|
module.singleton_bias.data.zero_() |
|
if isinstance(module, (nn.Linear, nn.Conv1d)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): |
|
""" |
|
Computes the output length of the convolutional layers |
|
""" |
|
dilation = 1 |
|
for _, kernel_sz, stride in zip( |
|
range(self.config.num_conv_layers), self.config.conv_kernel, self.config.conv_stride |
|
): |
|
padding = kernel_sz // 2 |
|
input_lengths = input_lengths + 2 * padding - dilation * (kernel_sz - 1) - 1 |
|
input_lengths = torch.div(input_lengths, stride, rounding_mode="trunc") + 1 |
|
|
|
return input_lengths |
|
|
|
def _get_feature_vector_attention_mask(self, feature_vector_length, attention_mask): |
|
|
|
|
|
if len(attention_mask.shape) > 2: |
|
attention_mask = attention_mask[:, :, -1] |
|
|
|
|
|
subsampled_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)) |
|
bsz = attention_mask.size()[0] |
|
attention_mask = torch.zeros( |
|
(bsz, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device |
|
) |
|
|
|
|
|
|
|
attention_mask[(torch.arange(bsz, device=attention_mask.device), subsampled_lengths - 1)] = 1 |
|
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).long() |
|
return attention_mask |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, (MCTCTEncoder)): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
MCTCT_START_DOCSTRING = r""" |
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use |
|
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and |
|
behavior. |
|
|
|
Parameters: |
|
config ([`MCTCTConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
MCTCT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_features (`torch.LongTensor` of shape `({0})`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`Wav2Vec2CTCTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
class MCTCTEncoder(MCTCTPreTrainedModel): |
|
def __init__(self, config: MCTCTConfig): |
|
super().__init__(config) |
|
self.hidden_dropout_prob = config.hidden_dropout_prob |
|
|
|
self.layer_norm = MCTCTLayerNorm() |
|
self.conv = MCTCTConv1dSubsampler(config) |
|
self.layers = nn.ModuleList([MCTCTLayer(config) for _ in range(config.num_hidden_layers)]) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
input_features: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
head_mask: torch.Tensor, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = True, |
|
) -> Union[Tuple, BaseModelOutput]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
input_features = self.layer_norm(input_features) |
|
|
|
inputs_embeds = self.conv(input_features) |
|
|
|
|
|
if attention_mask is not None: |
|
attention_mask = self._get_feature_vector_attention_mask(inputs_embeds.shape[1], attention_mask) |
|
|
|
hidden_states = nn.functional.dropout(inputs_embeds, p=self.hidden_dropout_prob, training=self.training) |
|
|
|
|
|
if attention_mask is not None: |
|
|
|
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype) |
|
|
|
encoder_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
|
|
|
|
if head_mask is not None: |
|
if head_mask.size()[0] != len(self.layers): |
|
raise ValueError( |
|
f"The head_mask should be specified for {len(self.layers)} layers, " |
|
f"but it is for {head_mask.size()[0]}." |
|
) |
|
|
|
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() |
|
for idx, encoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
|
|
dropout_probability = torch.rand([]) |
|
|
|
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False |
|
if not skip_the_layer or deepspeed_zero3_is_enabled: |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(encoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
(head_mask[idx] if head_mask is not None else None), |
|
) |
|
else: |
|
layer_outputs = encoder_layer( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if skip_the_layer: |
|
layer_outputs = (None, None) |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[1],) |
|
|
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare M-CTC-T Model transformer outputting raw hidden-states without any specific head on top.", |
|
MCTCT_START_DOCSTRING, |
|
) |
|
class MCTCTModel(MCTCTPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.encoder = MCTCTEncoder(config) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(MCTCT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
modality="audio", |
|
expected_output=_EXPECTED_OUTPUT_SHAPE, |
|
) |
|
def forward( |
|
self, |
|
input_features: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutput]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_features is None: |
|
raise ValueError("You have to specify input_features.") |
|
|
|
encoder_outputs = self.encoder( |
|
input_features, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
|
|
if not return_dict: |
|
return (sequence_output,) + encoder_outputs[1:] |
|
|
|
return BaseModelOutput( |
|
last_hidden_state=sequence_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"""MCTCT Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", |
|
MCTCT_START_DOCSTRING, |
|
) |
|
class MCTCTForCTC(MCTCTPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.mctct = MCTCTModel(config) |
|
|
|
if config.vocab_size is None: |
|
raise ValueError( |
|
f"You are trying to instantiate {self.__class__} with a configuration that " |
|
"does not define the vocabulary size of the language model head. Please " |
|
"instantiate the model as follows: `MCTCTForCTC.from_pretrained(..., vocab_size=vocab_size)`. " |
|
"or define `vocab_size` of your model's configuration." |
|
) |
|
output_hidden_size = config.hidden_size |
|
|
|
self.ctc_head = nn.Linear(output_hidden_size, config.vocab_size) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(MCTCT_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=CausalLMOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
expected_output=_CTC_EXPECTED_OUTPUT, |
|
expected_loss=_CTC_EXPECTED_LOSS, |
|
) |
|
def forward( |
|
self, |
|
input_features: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, CausalLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): |
|
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to |
|
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. |
|
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., |
|
config.vocab_size - 1]`. |
|
""" |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
outputs = self.mctct( |
|
input_features, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
|
|
logits = self.ctc_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
if labels.max() >= self.config.vocab_size: |
|
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") |
|
|
|
|
|
attention_mask = ( |
|
attention_mask |
|
if attention_mask is not None |
|
else torch.ones(input_features.shape[:-1], dtype=torch.long) |
|
) |
|
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) |
|
|
|
|
|
labels_mask = labels >= 0 |
|
target_lengths = labels_mask.sum(-1) |
|
flattened_targets = labels.masked_select(labels_mask) |
|
|
|
|
|
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) |
|
|
|
with torch.backends.cudnn.flags(enabled=False): |
|
loss = nn.functional.ctc_loss( |
|
log_probs, |
|
flattened_targets, |
|
input_lengths, |
|
target_lengths, |
|
blank=self.config.pad_token_id, |
|
reduction=self.config.ctc_loss_reduction, |
|
zero_infinity=self.config.ctc_zero_infinity, |
|
) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutput( |
|
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions |
|
) |
|
|