|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Fast Tokenization class for model DeBERTa.""" |
|
|
|
import json |
|
from typing import List, Optional, Tuple |
|
|
|
from tokenizers import pre_tokenizers |
|
|
|
from ...tokenization_utils_base import AddedToken, BatchEncoding |
|
from ...tokenization_utils_fast import PreTrainedTokenizerFast |
|
from ...utils import logging |
|
from .tokenization_deberta import DebertaTokenizer |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"microsoft/deberta-base": "https://huggingface.co/microsoft/deberta-base/resolve/main/vocab.json", |
|
"microsoft/deberta-large": "https://huggingface.co/microsoft/deberta-large/resolve/main/vocab.json", |
|
"microsoft/deberta-xlarge": "https://huggingface.co/microsoft/deberta-xlarge/resolve/main/vocab.json", |
|
"microsoft/deberta-base-mnli": "https://huggingface.co/microsoft/deberta-base-mnli/resolve/main/vocab.json", |
|
"microsoft/deberta-large-mnli": "https://huggingface.co/microsoft/deberta-large-mnli/resolve/main/vocab.json", |
|
"microsoft/deberta-xlarge-mnli": ( |
|
"https://huggingface.co/microsoft/deberta-xlarge-mnli/resolve/main/vocab.json" |
|
), |
|
}, |
|
"merges_file": { |
|
"microsoft/deberta-base": "https://huggingface.co/microsoft/deberta-base/resolve/main/merges.txt", |
|
"microsoft/deberta-large": "https://huggingface.co/microsoft/deberta-large/resolve/main/merges.txt", |
|
"microsoft/deberta-xlarge": "https://huggingface.co/microsoft/deberta-xlarge/resolve/main/merges.txt", |
|
"microsoft/deberta-base-mnli": "https://huggingface.co/microsoft/deberta-base-mnli/resolve/main/merges.txt", |
|
"microsoft/deberta-large-mnli": "https://huggingface.co/microsoft/deberta-large-mnli/resolve/main/merges.txt", |
|
"microsoft/deberta-xlarge-mnli": ( |
|
"https://huggingface.co/microsoft/deberta-xlarge-mnli/resolve/main/merges.txt" |
|
), |
|
}, |
|
} |
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { |
|
"microsoft/deberta-base": 512, |
|
"microsoft/deberta-large": 512, |
|
"microsoft/deberta-xlarge": 512, |
|
"microsoft/deberta-base-mnli": 512, |
|
"microsoft/deberta-large-mnli": 512, |
|
"microsoft/deberta-xlarge-mnli": 512, |
|
} |
|
|
|
PRETRAINED_INIT_CONFIGURATION = { |
|
"microsoft/deberta-base": {"do_lower_case": False}, |
|
"microsoft/deberta-large": {"do_lower_case": False}, |
|
} |
|
|
|
|
|
class DebertaTokenizerFast(PreTrainedTokenizerFast): |
|
""" |
|
Construct a "fast" DeBERTa tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level |
|
Byte-Pair-Encoding. |
|
|
|
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will |
|
be encoded differently whether it is at the beginning of the sentence (without space) or not: |
|
|
|
```python |
|
>>> from transformers import DebertaTokenizerFast |
|
|
|
>>> tokenizer = DebertaTokenizerFast.from_pretrained("microsoft/deberta-base") |
|
>>> tokenizer("Hello world")["input_ids"] |
|
[1, 31414, 232, 2] |
|
|
|
>>> tokenizer(" Hello world")["input_ids"] |
|
[1, 20920, 232, 2] |
|
``` |
|
|
|
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since |
|
the model was not pretrained this way, it might yield a decrease in performance. |
|
|
|
<Tip> |
|
|
|
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. |
|
|
|
</Tip> |
|
|
|
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should |
|
refer to this superclass for more information regarding those methods. |
|
|
|
Args: |
|
vocab_file (`str`, *optional*): |
|
Path to the vocabulary file. |
|
merges_file (`str`, *optional*): |
|
Path to the merges file. |
|
tokenizer_file (`str`, *optional*): |
|
The path to a tokenizer file to use instead of the vocab file. |
|
errors (`str`, *optional*, defaults to `"replace"`): |
|
Paradigm to follow when decoding bytes to UTF-8. See |
|
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. |
|
bos_token (`str`, *optional*, defaults to `"[CLS]"`): |
|
The beginning of sequence token. |
|
eos_token (`str`, *optional*, defaults to `"[SEP]"`): |
|
The end of sequence token. |
|
sep_token (`str`, *optional*, defaults to `"[SEP]"`): |
|
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for |
|
sequence classification or for a text and a question for question answering. It is also used as the last |
|
token of a sequence built with special tokens. |
|
cls_token (`str`, *optional*, defaults to `"[CLS]"`): |
|
The classifier token which is used when doing sequence classification (classification of the whole sequence |
|
instead of per-token classification). It is the first token of the sequence when built with special tokens. |
|
unk_token (`str`, *optional*, defaults to `"[UNK]"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
pad_token (`str`, *optional*, defaults to `"[PAD]"`): |
|
The token used for padding, for example when batching sequences of different lengths. |
|
mask_token (`str`, *optional*, defaults to `"[MASK]"`): |
|
The token used for masking values. This is the token used when training this model with masked language |
|
modeling. This is the token which the model will try to predict. |
|
add_prefix_space (`bool`, *optional*, defaults to `False`): |
|
Whether or not to add an initial space to the input. This allows to treat the leading word just as any |
|
other word. (Deberta tokenizer detect beginning of words by the preceding space). |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
model_input_names = ["input_ids", "attention_mask", "token_type_ids"] |
|
slow_tokenizer_class = DebertaTokenizer |
|
|
|
def __init__( |
|
self, |
|
vocab_file=None, |
|
merges_file=None, |
|
tokenizer_file=None, |
|
errors="replace", |
|
bos_token="[CLS]", |
|
eos_token="[SEP]", |
|
sep_token="[SEP]", |
|
cls_token="[CLS]", |
|
unk_token="[UNK]", |
|
pad_token="[PAD]", |
|
mask_token="[MASK]", |
|
add_prefix_space=False, |
|
**kwargs, |
|
): |
|
super().__init__( |
|
vocab_file, |
|
merges_file, |
|
tokenizer_file=tokenizer_file, |
|
errors=errors, |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
unk_token=unk_token, |
|
sep_token=sep_token, |
|
cls_token=cls_token, |
|
pad_token=pad_token, |
|
mask_token=mask_token, |
|
add_prefix_space=add_prefix_space, |
|
**kwargs, |
|
) |
|
self.add_bos_token = kwargs.pop("add_bos_token", False) |
|
|
|
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) |
|
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: |
|
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) |
|
pre_tok_state["add_prefix_space"] = add_prefix_space |
|
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) |
|
|
|
self.add_prefix_space = add_prefix_space |
|
|
|
@property |
|
def mask_token(self) -> str: |
|
""" |
|
`str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not |
|
having been set. |
|
|
|
Deberta tokenizer has a special mask token to be used in the fill-mask pipeline. The mask token will greedily |
|
comprise the space before the *[MASK]*. |
|
""" |
|
if self._mask_token is None: |
|
if self.verbose: |
|
logger.error("Using mask_token, but it is not set yet.") |
|
return None |
|
return str(self._mask_token) |
|
|
|
@mask_token.setter |
|
def mask_token(self, value): |
|
""" |
|
Overriding the default behavior of the mask token to have it eat the space before it. |
|
""" |
|
|
|
|
|
value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value |
|
self._mask_token = value |
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and |
|
adding special tokens. A DeBERTa sequence has the following format: |
|
|
|
- single sequence: [CLS] X [SEP] |
|
- pair of sequences: [CLS] A [SEP] B [SEP] |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs to which the special tokens will be added. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. |
|
""" |
|
if token_ids_1 is None: |
|
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] |
|
cls = [self.cls_token_id] |
|
sep = [self.sep_token_id] |
|
return cls + token_ids_0 + sep + token_ids_1 + sep |
|
|
|
def create_token_type_ids_from_sequences( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa |
|
sequence pair mask has the following format: |
|
|
|
``` |
|
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 |
|
| first sequence | second sequence | |
|
``` |
|
|
|
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). |
|
""" |
|
sep = [self.sep_token_id] |
|
cls = [self.cls_token_id] |
|
|
|
if token_ids_1 is None: |
|
return len(cls + token_ids_0 + sep) * [0] |
|
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] |
|
|
|
|
|
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: |
|
is_split_into_words = kwargs.get("is_split_into_words", False) |
|
assert self.add_prefix_space or not is_split_into_words, ( |
|
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " |
|
"to use it with pretokenized inputs." |
|
) |
|
|
|
return super()._batch_encode_plus(*args, **kwargs) |
|
|
|
|
|
def _encode_plus(self, *args, **kwargs) -> BatchEncoding: |
|
is_split_into_words = kwargs.get("is_split_into_words", False) |
|
|
|
assert self.add_prefix_space or not is_split_into_words, ( |
|
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " |
|
"to use it with pretokenized inputs." |
|
) |
|
|
|
return super()._encode_plus(*args, **kwargs) |
|
|
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
files = self._tokenizer.model.save(save_directory, name=filename_prefix) |
|
return tuple(files) |
|
|