|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes for ConvBERT.""" |
|
import json |
|
from typing import List, Optional, Tuple |
|
|
|
from tokenizers import normalizers |
|
|
|
from ...tokenization_utils_fast import PreTrainedTokenizerFast |
|
from ...utils import logging |
|
from .tokenization_convbert import ConvBertTokenizer |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt", |
|
"YituTech/conv-bert-medium-small": ( |
|
"https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt" |
|
), |
|
"YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt", |
|
} |
|
} |
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { |
|
"YituTech/conv-bert-base": 512, |
|
"YituTech/conv-bert-medium-small": 512, |
|
"YituTech/conv-bert-small": 512, |
|
} |
|
|
|
|
|
PRETRAINED_INIT_CONFIGURATION = { |
|
"YituTech/conv-bert-base": {"do_lower_case": True}, |
|
"YituTech/conv-bert-medium-small": {"do_lower_case": True}, |
|
"YituTech/conv-bert-small": {"do_lower_case": True}, |
|
} |
|
|
|
|
|
|
|
class ConvBertTokenizerFast(PreTrainedTokenizerFast): |
|
r""" |
|
Construct a "fast" ConvBERT tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. |
|
|
|
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should |
|
refer to this superclass for more information regarding those methods. |
|
|
|
Args: |
|
vocab_file (`str`): |
|
File containing the vocabulary. |
|
do_lower_case (`bool`, *optional*, defaults to `True`): |
|
Whether or not to lowercase the input when tokenizing. |
|
unk_token (`str`, *optional*, defaults to `"[UNK]"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
sep_token (`str`, *optional*, defaults to `"[SEP]"`): |
|
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for |
|
sequence classification or for a text and a question for question answering. It is also used as the last |
|
token of a sequence built with special tokens. |
|
pad_token (`str`, *optional*, defaults to `"[PAD]"`): |
|
The token used for padding, for example when batching sequences of different lengths. |
|
cls_token (`str`, *optional*, defaults to `"[CLS]"`): |
|
The classifier token which is used when doing sequence classification (classification of the whole sequence |
|
instead of per-token classification). It is the first token of the sequence when built with special tokens. |
|
mask_token (`str`, *optional*, defaults to `"[MASK]"`): |
|
The token used for masking values. This is the token used when training this model with masked language |
|
modeling. This is the token which the model will try to predict. |
|
clean_text (`bool`, *optional*, defaults to `True`): |
|
Whether or not to clean the text before tokenization by removing any control characters and replacing all |
|
whitespaces by the classic one. |
|
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): |
|
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this |
|
issue](https://github.com/huggingface/transformers/issues/328)). |
|
strip_accents (`bool`, *optional*): |
|
Whether or not to strip all accents. If this option is not specified, then it will be determined by the |
|
value for `lowercase` (as in the original ConvBERT). |
|
wordpieces_prefix (`str`, *optional*, defaults to `"##"`): |
|
The prefix for subwords. |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION |
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
slow_tokenizer_class = ConvBertTokenizer |
|
|
|
def __init__( |
|
self, |
|
vocab_file=None, |
|
tokenizer_file=None, |
|
do_lower_case=True, |
|
unk_token="[UNK]", |
|
sep_token="[SEP]", |
|
pad_token="[PAD]", |
|
cls_token="[CLS]", |
|
mask_token="[MASK]", |
|
tokenize_chinese_chars=True, |
|
strip_accents=None, |
|
**kwargs, |
|
): |
|
super().__init__( |
|
vocab_file, |
|
tokenizer_file=tokenizer_file, |
|
do_lower_case=do_lower_case, |
|
unk_token=unk_token, |
|
sep_token=sep_token, |
|
pad_token=pad_token, |
|
cls_token=cls_token, |
|
mask_token=mask_token, |
|
tokenize_chinese_chars=tokenize_chinese_chars, |
|
strip_accents=strip_accents, |
|
**kwargs, |
|
) |
|
|
|
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) |
|
if ( |
|
normalizer_state.get("lowercase", do_lower_case) != do_lower_case |
|
or normalizer_state.get("strip_accents", strip_accents) != strip_accents |
|
or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars |
|
): |
|
normalizer_class = getattr(normalizers, normalizer_state.pop("type")) |
|
normalizer_state["lowercase"] = do_lower_case |
|
normalizer_state["strip_accents"] = strip_accents |
|
normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars |
|
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state) |
|
|
|
self.do_lower_case = do_lower_case |
|
|
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): |
|
""" |
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and |
|
adding special tokens. A ConvBERT sequence has the following format: |
|
|
|
- single sequence: `[CLS] X [SEP]` |
|
- pair of sequences: `[CLS] A [SEP] B [SEP]` |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs to which the special tokens will be added. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. |
|
""" |
|
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] |
|
|
|
if token_ids_1 is not None: |
|
output += token_ids_1 + [self.sep_token_id] |
|
|
|
return output |
|
|
|
def create_token_type_ids_from_sequences( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A ConvBERT |
|
sequence pair mask has the following format: |
|
|
|
``` |
|
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 |
|
| first sequence | second sequence | |
|
``` |
|
|
|
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). |
|
""" |
|
sep = [self.sep_token_id] |
|
cls = [self.cls_token_id] |
|
if token_ids_1 is None: |
|
return len(cls + token_ids_0 + sep) * [0] |
|
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
files = self._tokenizer.model.save(save_directory, name=filename_prefix) |
|
return tuple(files) |
|
|