|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" CANINE model configuration""" |
|
|
|
from ...configuration_utils import PretrainedConfig |
|
from ...utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", |
|
|
|
} |
|
|
|
|
|
class CanineConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`CanineModel`]. It is used to instantiate an |
|
CANINE model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the CANINE |
|
[google/canine-s](https://huggingface.co/google/canine-s) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimension of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the deep Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoders. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoders. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` are supported. |
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout probabilitiy for all fully connected layers in the embeddings, encoders, and pooler. |
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention probabilities. |
|
max_position_embeddings (`int`, *optional*, defaults to 16384): |
|
The maximum sequence length that this model might ever be used with. |
|
type_vocab_size (`int`, *optional*, defaults to 16): |
|
The vocabulary size of the `token_type_ids` passed when calling [`CanineModel`]. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
downsampling_rate (`int`, *optional*, defaults to 4): |
|
The rate at which to downsample the original character sequence length before applying the deep Transformer |
|
encoder. |
|
upsampling_kernel_size (`int`, *optional*, defaults to 4): |
|
The kernel size (i.e. the number of characters in each window) of the convolutional projection layer when |
|
projecting back from `hidden_size`*2 to `hidden_size`. |
|
num_hash_functions (`int`, *optional*, defaults to 8): |
|
The number of hash functions to use. Each hash function has its own embedding matrix. |
|
num_hash_buckets (`int`, *optional*, defaults to 16384): |
|
The number of hash buckets to use. |
|
local_transformer_stride (`int`, *optional*, defaults to 128): |
|
The stride of the local attention of the first shallow Transformer encoder. Defaults to 128 for good |
|
TPU/XLA memory alignment. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import CanineConfig, CanineModel |
|
|
|
>>> # Initializing a CANINE google/canine-s style configuration |
|
>>> configuration = CanineConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the google/canine-s style configuration |
|
>>> model = CanineModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "canine" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=3072, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=16384, |
|
type_vocab_size=16, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
pad_token_id=0, |
|
bos_token_id=0xE000, |
|
eos_token_id=0xE001, |
|
downsampling_rate=4, |
|
upsampling_kernel_size=4, |
|
num_hash_functions=8, |
|
num_hash_buckets=16384, |
|
local_transformer_stride=128, |
|
**kwargs, |
|
): |
|
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
|
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.initializer_range = initializer_range |
|
self.type_vocab_size = type_vocab_size |
|
self.layer_norm_eps = layer_norm_eps |
|
|
|
|
|
self.downsampling_rate = downsampling_rate |
|
self.upsampling_kernel_size = upsampling_kernel_size |
|
self.num_hash_functions = num_hash_functions |
|
self.num_hash_buckets = num_hash_buckets |
|
self.local_transformer_stride = local_transformer_stride |
|
|