|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Bloom configuration""" |
|
from collections import OrderedDict |
|
from typing import TYPE_CHECKING, Any, List, Mapping, Optional |
|
|
|
from packaging import version |
|
|
|
|
|
if TYPE_CHECKING: |
|
from ... import PreTrainedTokenizer, TensorType |
|
|
|
from ...configuration_utils import PretrainedConfig |
|
from ...onnx import OnnxConfigWithPast, PatchingSpec |
|
from ...utils import is_torch_available, logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", |
|
"bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", |
|
"bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", |
|
"bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", |
|
"bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", |
|
"bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", |
|
} |
|
|
|
|
|
class BloomConfig(PretrainedConfig): |
|
""" |
|
This is the configuration class to store the configuration of a [`BloomModel`]. It is used to instantiate a Bloom |
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to the Bloom architecture |
|
[bigscience/bloom](https://huggingface.co/bigscience/bloom). |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 250880): |
|
Vocabulary size of the Bloom model. Defines the maximum number of different tokens that can be represented |
|
by the `inputs_ids` passed when calling [`BloomModel`]. Check [this |
|
discussion](https://huggingface.co/bigscience/bloom/discussions/120#633d28389addb8530b406c2a) on how the |
|
`vocab_size` has been defined. |
|
hidden_size (`int`, *optional*, defaults to 64): |
|
Dimensionality of the embeddings and hidden states. |
|
n_layer (`int`, *optional*, defaults to 2): |
|
Number of hidden layers in the Transformer encoder. |
|
n_head (`int`, *optional*, defaults to 8): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): |
|
The epsilon to use in the layer normalization layers. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
apply_residual_connection_post_layernorm (`bool`, *optional*, defaults to `False`): |
|
If enabled, use the layer norm of the hidden states as the residual in the transformer blocks |
|
hidden_dropout (`float`, *optional*, defaults to 0.1): |
|
Dropout rate of the dropout function on the bias dropout. |
|
attention_dropout (`float`, *optional*, defaults to 0.1): |
|
Dropout rate applied to the attention probs |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). |
|
pretraining_tp (`int`, *optional*, defaults to `1`): |
|
Experimental feature. Tensor parallelism rank used during pretraining with Megatron. Please refer to [this |
|
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is |
|
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this |
|
issue](https://github.com/pytorch/pytorch/issues/76232). Note also that this is enabled only when |
|
`slow_but_exact=True`. |
|
slow_but_exact (`bool`, *optional*, defaults to `False`): |
|
Experimental feature. Whether to use slow but exact implementation of the attention mechanism. While |
|
merging the TP rank tensors, due to slicing operations the results may be slightly different between the |
|
model trained on Megatron and our model. Please refer to [this |
|
issue](https://github.com/pytorch/pytorch/issues/76232). A solution to obtain more accurate results is to |
|
enable this feature. Enabling this will hurt the computational time of the inference. Will be probably |
|
resolved in the future once the main model has been fine-tuned with TP_rank=1. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import BloomConfig, BloomModel |
|
|
|
>>> # Initializing a Bloom configuration |
|
>>> configuration = BloomConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the configuration |
|
>>> model = BloomModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "bloom" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
attribute_map = { |
|
"num_hidden_layers": "n_layer", |
|
"num_attention_heads": "n_head", |
|
} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=250880, |
|
hidden_size=64, |
|
n_layer=2, |
|
n_head=8, |
|
layer_norm_epsilon=1e-5, |
|
initializer_range=0.02, |
|
use_cache=True, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
apply_residual_connection_post_layernorm=False, |
|
hidden_dropout=0.0, |
|
attention_dropout=0.0, |
|
pretraining_tp=1, |
|
slow_but_exact=False, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
|
|
n_embed = kwargs.pop("n_embed", None) |
|
self.hidden_size = hidden_size if n_embed is None else n_embed |
|
self.n_layer = n_layer |
|
self.n_head = n_head |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_range = initializer_range |
|
self.use_cache = use_cache |
|
self.pretraining_tp = pretraining_tp |
|
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm |
|
self.hidden_dropout = hidden_dropout |
|
self.attention_dropout = attention_dropout |
|
|
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
self.slow_but_exact = slow_but_exact |
|
|
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
|
|
|
|
class BloomOnnxConfig(OnnxConfigWithPast): |
|
torch_onnx_minimum_version = version.parse("1.12") |
|
|
|
def __init__( |
|
self, |
|
config: PretrainedConfig, |
|
task: str = "default", |
|
patching_specs: List[PatchingSpec] = None, |
|
use_past: bool = False, |
|
): |
|
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past) |
|
if not getattr(self._config, "pad_token_id", None): |
|
|
|
self._config.pad_token_id = 0 |
|
|
|
@property |
|
def inputs(self) -> Mapping[str, Mapping[int, str]]: |
|
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) |
|
if self.use_past: |
|
|
|
self.fill_with_past_key_values_(common_inputs, direction="inputs", inverted_values_shape=True) |
|
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"} |
|
else: |
|
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"} |
|
|
|
return common_inputs |
|
|
|
@property |
|
def num_layers(self) -> int: |
|
return self._config.n_layer |
|
|
|
@property |
|
def num_attention_heads(self) -> int: |
|
return self._config.n_head |
|
|
|
@property |
|
def atol_for_validation(self) -> float: |
|
return 1e-3 |
|
|
|
def generate_dummy_inputs( |
|
self, |
|
tokenizer: "PreTrainedTokenizer", |
|
batch_size: int = -1, |
|
seq_length: int = -1, |
|
is_pair: bool = False, |
|
framework: Optional["TensorType"] = None, |
|
) -> Mapping[str, Any]: |
|
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs( |
|
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework |
|
) |
|
|
|
|
|
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]}) |
|
|
|
|
|
if self.use_past: |
|
if not is_torch_available(): |
|
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") |
|
else: |
|
import torch |
|
|
|
batch, seqlen = common_inputs["input_ids"].shape |
|
|
|
past_key_values_length = seqlen + 2 |
|
head_dim = self._config.hidden_size // self.num_attention_heads |
|
past_key_shape = ( |
|
batch * self.num_attention_heads, |
|
head_dim, |
|
past_key_values_length, |
|
) |
|
past_value_shape = ( |
|
batch * self.num_attention_heads, |
|
past_key_values_length, |
|
head_dim, |
|
) |
|
ordered_inputs["past_key_values"] = [ |
|
(torch.zeros(past_key_shape), torch.zeros(past_value_shape)) for _ in range(self.num_layers) |
|
] |
|
|
|
ordered_inputs["attention_mask"] = common_inputs["attention_mask"] |
|
if self.use_past: |
|
mask_dtype = ordered_inputs["attention_mask"].dtype |
|
ordered_inputs["attention_mask"] = torch.cat( |
|
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 |
|
) |
|
|
|
return ordered_inputs |
|
|
|
@property |
|
def default_onnx_opset(self) -> int: |
|
return 13 |
|
|